UNCLASSIFIED

AD 407152

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

CONESCO, ENC. consultants in engineering science 205 Sixth Street Cambridge 42, Massachusetts

SHIP HULL VIBRATIONS - 5 ALEANYSIS OF HULL STRUCTURES AS APPLIED TO SSB(N) 598 GEORGE WASHINGTON

bу

F. E. Reed

Elizabeth Cuthill *

Contract Number:

NObs 86111

Sponsor:

Department of the Navy

Bureau of Ships

Research and Development Division

Ships Silencing Branch

Project S-F013-11-01, Task 1351

March 1963

CONESCO, INC. Report No. F-111-2

*Applied Mathematics Laboratory
David Taylor Model Basin

TABLE OF CONTENTS

		Page
ABST	TRACT	viii
SUM	MARY	ix
	Statement of the Problem Conclusions Recommendations	ix × ×i
ı	INTRODUCTION	1
11	METHOD OF SOLUTION	2
111	DEFINITION OF THE MASS AND ELASTIC PROPERTIES OF THE SHIP	2
IV	CALCULATION PROCEDURE	4
٧	DAMPING	11
VI	REPRESENTATION OF THE HULL FOR CALCULATIONS	12
VII	RESULTS OF CALCULATION	34
	 Longitudinal Vibration Vertical Bending Vibration 	34 47
APPE	INDICES	
	A. Procedures Used in Defining the Ship Weight, Distribution of any or	√ A-1
	B. (Virtual Inertia of Entrained Water, in Longitudinal Modes a beautions	mo 8 ≈1 ;
	1. Determination of an Ellipsoid to Represent the Hull 2. Analytical Representation of the Vibration Pattern 3. The Distribution of Entrained Water Inertia on the	B -9
•	Ellipsoid	B -9 5,00,43

TABLE OF CONTENTS

		Page
	4. The Distribution of Entrained Water Inertia on the Actual Hull	B-21
	 A Brief Consideration of the Effects of Fluid Elasticity Upon the Entrained Mass and Energy Dissipation of a Prolate Ellipsoid Vibrating Longitudinally 	B- 25
c.	Virtual Inertia of Entrained Water in Bending Modes	C- 1
D.	Stiffness of the Hull in the Axial Direction, in Vertical Bending and in Vertical Shear	D- 1
	 Calculation of Axial Stiffness Calculation of Stiffness in Vertical Bending Calculation of Stiffness in Vertical Shear 	D- 1 D- 2 D- 2
Ε.	Influence of the Conical Shape and of the Transverse Framing Upon the Stiffness of a Submarine Hull	E- 1
F.	Treatment of Discontinuous Structures	F- 1
G.	Procedures used in Defining the Sprung Masses in the Ship	G-1
Н.	Procedures used in Defining the Mass-Elastic Characteristics of the Propulsion System	H- 1
	 In Longitudinal Vibration In Vertical Vibration 	H- 1 H- 7
I.	The Generalized Bending Response Code (GBRC 1)	1-1
J.	Input Data for Vertical Bending Calculations	J- 1

REFERENCES

LIST OF FIGURES

		Pag
Figure 1	Flow of Work in Predicting Hull Vibration	3
Figure 2	SSB(N) 598 - Axial, Shear and Bending Stiffness	5
Figure 3	Submerged Hull Weight SSB(N) 598 GEORGE WASHINGTON	6
Figure 4	SSB(N) 598, Sectional Weight Moment of Inertia	7
Figure 5	SSB(N) 598 – Weight and Stiffness of Propulsion System in Longitudinal Vibration	8
Figure 6	Mass and Stiffness of Propulsion in Vertical Vibration	9
Figure 7	Longitudinal Vibration – Hull Representation by 25 Uniformly Spaced Concentrated Masses	20
Figure 8	Hull Representation by 16 Concentrated Masses - Longitudinal Vibration	21
Figure 9	Longitudinal Vibration - Hull Representation by 36 Concentrated Masses	22
Figure 10	SSB(N) 598 – Vertical Bending Vibration Calculations, Cases 12 and 12A	23
Figure 11	SSB(N) 598 - Vertical Bending Vibration Calculations - Case 13	24
Figure 12	SSB(N) 598 – Vertical Bending Vibration Calculations – Cases 14 and 15	25
Figure 13	SSB(N) 598 - Vertical Bending Vibration Calculations, Case 16	26
Figure 14	SSB(N) 598 – Vertical Bending Vibration Calculations, Cases 17–26 and 30	27
Figure 15	SSB(N) 598 - Vertical Bending Vibration Calculation, Case 27	29
Figure 16	Response Curves in Longitudinal Vibration, Case 1a	35
Figure 17	Response Curves in Longitudinal Vibration, Case 3	36
Figure 18	Response Curves in Longitudinal Vibration, Case 4	37
Figure 19	Response Curves in Longitudinal Vibration, Case 5	38
Figure 20	Response Curves in Longitudinal Vibration, Case 6	39
Figure 21	Response Curves in Longitudinal Vibration, Case 7	40

LIST OF FIGURES (continued)

		Page
Figure 22	Longitudinal Vibration – Phase Angle Relative to Propeller Excitation, Case 7	41
Figure 23	Response Curves in Longitudinal Vibration, Case 8	42
Figure 24	Response Curves in Longitudinal Vibration, Case 9	43
Figure 25	Response Curves in Longitudinal Vibration, Case 10	44
Figure 26	Response Curves in Longitudinal Vibration, Case 11	45
Figure 27	Displacement in Vertical Bending - Case 12A	48
Figure 28	Vertical Bending Phase Angles, Case 12A	49
Figure 29	Displacement in Vertical Bending, Case 13	50
Figure 30	Vertical Bending Phase Angles, Case 13	51
Figure 31	Displacement in Vertical Bending, Case 14	52
Figure 32	Vertical Bending Phase Angles, Case 14	53
Figure 33	Displacement in Vertical Bending, Case 15	54
Figure 34	Vertical Bending Phase Angles, Case 15	55
Figure 35	Displacement in Vertical Bending, Case 16	56
Figure 36	Vertical Bending Phase Angles, Case 16	57
Figure 37	Displacement in Vertical Bending, Case 17	58
Figure 38	Vertical Bending Phase Angles, Case 17	59
Figure 39	Displacement in Vertical Bending, Case 18	60
Figure 40	Vertical Bending Phase Angles, Case 18	61
Figure 41	Displacement in Vertical Bending, Case 19	62
Figure 42	Vertical Bending Phase Angles, Case 19	63
Figure 43	Displacement in Vertical Bending, Case 20	64
Figure 44	Vertical Bending Phase Angles, Case 20	65
Figure 45	Displacement in Vertical Bending, Case 21	66
Figure 46	Vertical Bending Phase Angles, Case 21	67

LIST OF FIGURES (continued)

		Page
Figure 47	Displacement in Vertical Bending, Case 22	68
Figure 48	Vertical Bending Phase Angles, Case 22	69
Figure 49	Displacement in Vertical Bending, Case 23	<i>7</i> 0
Figure 50	Vertical Bending Phase Angles, Case 23	<i>7</i> 1
Figure 5)	Displacement in Vertical Bending, Case 24	72
Figure 52	Vertical Bending Phase Angles, Case 24	<i>7</i> 3
Figu r e 53	Displacement in Vertical Bending, Case 25	74
Figure 54	Vertical Bending Phase Angles, Case 25	75
Figure 55	Displacement in Vertical Bending, Case 26	76
Figure 56	Vertical Bending Phase Angles, Case 26	77
Figure 57	Displacement in Vertical Bending, Case 27	<i>7</i> 8
Figure 58	Vertical Bending Phase Angles, Case 27	79
Fĭ gure 59	Displacement in Vertical Bending, Case 30	80
Figure 60	Vertical Bending Phase Angle, Case 30	81
Figure A-i	Longitudinal Location of Hull Weights - Typical Section	A-2
Figure A-2	Distributed Mass, Concentrated Masses, Captured Water and Water Ballast - Typical Section	A-12
Figure 3	Submerged Hull Weight - SSB(N) 598 GEORGE WASHINGTON	5
Figure B-1	Half Breadth of SSB(N) 598 at 15'-9-7/8" Water Line and Radius of Matching Ellipsoid	B-6
Figure B-2	Match of Ellipsoid with Vertical Projection of Main Hull	B-8
Figure B-3	Representation of Normal Mode Deflection by a Functional Relationship	B-10
Figure B-4	Water Inertia for an Ellipsoid Representing SSB(N) 598	B-22
Figure B-5	Water Inertia for SSB(N) 598 using Pressures for an Ellipsoid and the Area Curve of the Actual Ship	B-24

LIST OF FIGURES (continued)

		Page
Figure C-1	Longitudinal Inertia Coefficients for Motions of an Ellipsoid	C-2
Figure C-2	Longitudinal Inertia Coefficients for a Long Cylinder Deflecting in Sinusoidal Waves of Length L	C-4
Figure C-3	Longitudinal Inertia Coefficients for a Vibrating Ellipsoid	C-5
Figure 2	SSB(N) 598 Axial, Shear and Bending Stiffness	5
Figure D-2	Computing Form for Determining Sectional Stiffness Characteristics	D-3
Figure E-1	Diagram of Shell Supported by Circumferential Frames	E- 1
Figure F-1	Discontinuous plate attached to an Axially Stressed Plate that is Restrained from Bending	F- 2
Figure F-2	Effective Breadth Ratio for a Plate Attached at both Sides	F- 3
Figure 5	SSB(N) 598, Weight and Stiffness of Propulsion System in Longitudinal Vibration	8
Figure H-1	SSB(N) 598 - The Propulsion System in Vertical Vibration	H-13
Figure H-2	Deflection Curves for Segmented Cutless Bearings	

LIST OF TABLES

		Page
Table I	SSB(N) 598 GEORGE WASHINGTON Sprung Weights	10
Table II	Schedule of Hull Vibration Calculations	13
Table III	35 Mass Representation – Variations of Vertical Bending Vibration Calculations	28
Table IV	Location of Calculation Stations	30
Table A-I	SSB(N) 598 – Concentrated Weights Located between 30' and 80' from the Bow	A-10
Table A+11	Hull Divisions for Estimating Weight Distributions	A-14
Table A-III	Distribution of Weight of Interior Paint	A-15
Table A-IV	Distribution of Weight of Power Wiring	A-16
Table B-1	Mean Square Determination of Ellipsoid	B -7
Table B-II	Calculation of Local Values of Entrained Mass	B-23
Table H-1	Weight Distribution in Propulsion System in Longitudinal Vibration	н -3
Table H-2	Typical Calculation for the Axial Stiffness between the Propeller and the Thrust Bearing	H - 5

ABSTRACT

A computer program for determining the natural frequency of a ship hull elastically connected to other elastic systems and to sprung masses and containing concentrated and hysteresis damping is developed. This program is applied to the mass-elastic system that represents the SSB(N) 598 GEORGE WASHINGTON in detail. The influence upon the hull response to propeller and hull excitation in the stern of variables such as the number of mass points used to represent the hull, the omission of the propulsion sub-system, the stiffness between the propulsion sub-system and the primary hull, the inclusion of the moment of inertia of the hull cross-sections, the treatment of water inertias, the treatment of sprung masses and the amount of hysteresis damping in the hull is shown.

SUMMARY

STATEMENT OF THE PROBLEM

A previous prediction ² of the amplitude of longitudinal and vertical bending vibration excited by the propeller for the submarine GEORGE WASHINGTON, SSB(N) 598, gave results that agreed moderately well with tests in longitudinal vibration and did not agree for vertical bending vibration. This study has been undertaken to explore the factors that influence the structural response of the hull and eventually (in a subsequent report) to see whether it is possible to make a more accurate prediction of the amplitudes of propeller excited hull vibration.

WORK SUMMARY

- 1. A computing machine program that is sufficiently flexible to deal with parallel sub-systems (e.g., the propulsion system), sprung masses and concentrated and hysteresis damping in axial and bending vibration has been developed.
- 2. The mass-elastic characteristics of the SSB(N) 598 GEORGE WASHINGTON have been determined in considerable detail.
- 3. The effects of various approximations such as omitting the propulsion sub-system, treating sprung masses as rigidly connected, neglecting rotary inertia, representing the hull with a limited number of mass points, spacing the mass points uniformly rather than to conform to hull mass and stiffness variations, have been investigated
- 4. The effects of various amounts of hysteresis damping in the hull have been investigated.

CONCLUSIONS

- 1. In predicting the vibration response of a ship in axial and bending modes, it is necessary to include the propulsion system (propellers and shafting) as an elastic sub-system in the calculations if reliable results are to be obtained.
- Hull damping not only reduces the vibration amplitude in the vicinity of the
 excitation but also attenuates the relutive amplitude at locations remote from the point of
 excitation.
- 3. In order to obtain reliable predictions of vibration response of a ship it is necessary to define the hull mass and stiffnesses accurately. A less accurate definition is required if only hull frequencies are desired. Because of the attenuation caused by damping, the accurate definition of the hull is particularly important in the regions near the excitation.
- 4. On the submarines the effect of including rotary inertia of the hull cross sections upon the response of the ship are so small as to be negligible.
- 5. When a careful effort has been expended to define the hull mass and stiffnesses accurately, it is not advisable to use only a few mass points to represent the hull. The computation program can accept many points at a negligible extra cost. The greater number of points will result in better accuracy and a better definition of the hull motions will be obtained.
- 6. The hull response is sensitive to the stiffness of the connections between the propulsion system and the hull, and therefore careful attention should be paid to these stiffnesses. By controlling these stiffnesses to locate the resonant frequencies between the propulsion sub-system and the hull, it is possible to influence the hull vibration amplitudes at low speeds as compared with those at high speeds.
- 7. Although the total weight of the sprung masses is small compared to the weight of the hull, including them as sprung weights rather than as solidly mounted weights has an

important effect upon the hull response.

RECOMMENDATIONS

If reliable estimates of the response of a ship hull to vibratory excitation are to be obtained, it is necessary to determine the mass and elastic characteristics of the hull in considerable detail. Particular attention should be paid to the propulsion sub-system and its connection to the hull. The local springing of hull weights must be included.

I INTRODUCTION

In an early report 1 CONESCO outlined a program for predicting the amplitude of propeller excited hull vibration and presented ways of estimating the excitation arising from the propellers working in irregular wakes. A subsequent report 2 applied this program to a prediction of the longitudinal and vertical bending propeller excited vibrations on the USS GEORGE WASHINGTON, SSB(N) 598. For this purpose the excitation was computed by the methods of the earlier report but the structural response of the hull was determined from existing calculations 3. It was considered that if the ship resonant frequencies as measured on trials and the amplitudes of vibration on the flanks of the resonances agreed with those that were predicted, that the method of prediction would be validated. The amplitude of vibration at the resonances would depend upon more detailed considerations of damping in the calculations and more experimental comparison between the damped calculations and trial results than could be made at the time.

When this comparison was made it was found that there was a moderate support for the calculation method as applied of longitudinal vibration of the hull since the predicted amplitudes of vibration on the flanks agree moderately well with measured values and the calculated and measured natural frequencies agreed within about 10%. For the bending calculation there appeared to be no agreement. However, the representation of the hull in the axial response calculations took account of the elasticity of the connection between the propeller and the hull where the bending calculation did not.

In an effort to improve the accuracy of the computation process and to study the effects of damping on the hull vibration amplitude, a thorough study of the structural response of the hull has been undertaken. To accomplish this it has been necessary to develop a new program for computing hull response in bending which is sufficiently adaptable to include not only the mass and elasticity of the elements in the propulsion system, but also the elastically supported elements throughout the ship. A procedure for computing the response of a ship that is represented in the most general way of a beam having

1

distributed mass and stiffness was also considered but because of complexity in the programming could not be completed and is therefore not reported at this time.

The results of these studies, involving (1) a more precise representation of the hull mass and structure (2) the inclusion of elastic sub-systems and (3) an investigation of the effects of simplifications and assumptions made in the calculations, are presented in this unclassified report. Because the actual vibration of the ship falls in the realm of classified information, the comparison of calculated and experimental amplitudes of vibration will be presented in a subsequent classified report.

II METHOD OF SOLUTION

The method of computing the amplitudes of the propeller excited hull vibration falls into two categories: (1) the calculation of the exciting forces and (2) the calculation of the response of the hull to these exciting forces. This is essentially the standard procedure followed in the calculation of the forced vibrations of any system but in the case of ships involves many difficulties. The flow of work in the prediction process is diagrammed in Figure 1. The prediction of the forces has been discussed in previous reports. ^{2, 4} This report is concerned solely with the response of the hull to these forces.

III DEFINITION OF THE MASS AND ELASTIC PROPERTIES OF THE SHIP

It should be pointed out that since the ship under consideration is a submarine, the definition of the mass and stiffness can be made quite exact. The requirement of adequate transverse strength results in heavy structural members which carry their loads without buckling or local resonances. Furthermore, the shape is readily adaptable to theoretical predictions of the inertias of entrained water. It should not be assumed however, that even the submarine can be defined precisely. The flexibilities and water inertias associated with the control surfaces are inadequately handled in the present study and there are questions about the stiffness of the superstructure and the mass of the free flooding water

Structural Drawings Elasticity Determination Flexibly Connected Mass Determination Rigidly Connected Analog to Ship in Vibration Water Inertia Mathematical RESPONSE Hull Lines Surface Configuration Wedge Shape **Surface Forces** THUII Lines 三 **EXCITATION** (Insteady Flow Calculation) Propeller Drawing Self-propelled Propeller under Average -Wake Survey Model Basin Check with Harmonic Components of Longitudinal Wake Force Distribution of tests Burrill Calculation **Propeller Forces** Harmonic Analysis Wake Conditions **Tangential Wake**

SEQUENCE OF CALCULATIONS FOR ESTIMATING THE AMPLITUDE OF PROPELLER EXCITED HULL VIBRATION

between the superstructure and the hull.

In this study the mass distribution and the stiffness distribution were determined to a rather high degree of precision and then plotted. From these plotted results a variety of hull representations were developed which seemed to fit the distributions of mass and stiffness well. A small scale plot of stiffnesses is given in Figure 2 and of weight distribution in Figure 3. The weight moments of inertia of the hull are presented in Figure 4. (Apparently E. B. division feels that the entrained water contributes to moment of inertia. We feel that the contribution, as to the axial mass, is negligible). The weight and stiffness of the propulsion system in longitudinal vibration is given in Figure 5 and in vertical vibration in Figure 6. The characteristics of the sprung mounted weights and their mountings are given in Table I. A discussion of the methods by which these quantities were determined and the factors that entered into their determination are given in Appendices A-H.

IV CALCULATION PROCEDURE

For the longitudinal vibration it was found that an existing Taylor Model Basin
Code was adequate for handling all of the variables that it was desired to impose upon
the problem. For the analysis of the bending, all of the existing codes were quite inadequate.
CONESCO originally proposed some additions by which the existing codes might be made
workable but the addition of these additional complications to an already inefficient code
was not considered desirable. Dr. Cuthill (one of the authors of this report) therefore
prepared an entirely new code which is adaptable to a wide variety of hull representations.
This code can deal not only with the bending but also is sufficiently general to cover the
longitudinal vibration and with small changes can deal with coupled longitudinal and
vertical bending or coupled torsion and transverse bending. Because it was developed after
the hull had been defined, the present calculations do not fully exploit the potentials of
the new code (specifically in the treatment of control surfaces). A presentation of the
basis for this code and the way it is used is given in Appendix 1. This general bending

Figure 2 - SSB(N) 598 - Axial, Shear and Bending Stiffness

Figure 4 - Sectional Weight Moments of Inertia - SSB(N,) 598

7340 4500 12 × 10⁶ 4000 26 × 10⁶ 15, 100 0. 10 × 10 13, 660 Hotel Hotel 3. 3×10⁶ 31,900 10 × 10⁶ lb/in $b = 695 \frac{lb sec}{in}$ 51,680 lb.

Figure 5-SSB(N) 598 Weightand Stiffness of Propulsion System in Longitudinal Vibration

Equivalent Series System

TABLE I - SSB(N) 598 GEORGE WASHINGTON SPRUNG WEIGHTS

Flexibly-Mounted	Distance from	Weigh⁺	Longi	Longitudinal	Vertical	cal
Element	F.P. (feet)	(lbs)	Stiffness	Damping .	Stiffness	Damping *
			u /a.	n sec/ In	16/ in	lb sec/in
Each of two Fair-	86	Long. 12, 771	Rigid			
water diving planes		Vert. 7, 750	·		Rigid	
		37, 300			122, 200	40°
Gyro, Hyd, System	125	906 '9	12, 400	24.6	31, 440	29.3
L.P. Blower	128	3, 145	5, 720	11.5	13, 600	12.6
O ₂ Gen. Plant	213	15, 200	11,600	27.8	50,000	60.7
Air Cond. Set	217	15, 200	1:, 200	19,3	51, 600	41.6
400 Cycle M. G. sets	224	12, 26 i	8, 100	15.2	38, 700	33, 3
H.P. Air Comp.	228	3, 450	9, 160	25, 25	14, 400	14, 5.
Main Coolant Pumps	251, 5	21, 893	307, 000	192	Rigid	
Trim and Drain Pumps	268	5, 300	9, 000	15,9	16, 000	16.4
300 KW M.G. Sets	276	32, 920	20,640	107	46, 000	104
H.P. Air Comp.	292	3, 991	7, 150	14.2	16, 700	16.7
Air Cond. Sets each of 2	294	27, 470	36, 120	81,5	90, 500	79.1
H.P. Air Comp.	298	3, 991	7, 150	14.2	16, 700	16.7
Hydraulic Plant	346	4, 300	6, 400	13,6	16, 800	19.8
Each of 2 stabilizers	360	Long. 36, 495	Rigid			
+ Stern Planes		Vert. 68, 100 125,000	-		Rigid	

Damping is located between mass and foundation except for fairwater and stern p. 1es which are to ground. Fairwater and stern plane damping constant is proportional to ship speed. This proportionality is represented by n, the frequency of oscillation, cps, for the case of a 5-bladed propeller. response code carries the AML problem number designation 840-277.

V DAMPING

Damping on a complex structure like a ship is difficult to define — in fact, it can only be determined by experience. However, there are certain types of damping that can be calculated by theory or from the results of experiments external to the ship. Among these are the damping of the propeller in longitudinal, torsional and transverse motion, the aerodynamic damping of control surfaces and the damping in the rubber mounts used under flexibly mounted machinery. Although these are significant sources of damping, the major damping is in the hull. By experiments and theory it is known that this damping is in the hull itself not in the water and is thus related to the slope of the deflection curve, not the alsolute amplitude, i.e., the relative amplitudes between adjacent points. In the damping of structures it has been found that one of the most reasonable ways to deal with this type of damping is to tie it with the stress in the structure. If it is assumed that a certain percentage of the stress energy in a volume of stressed material is dissipated because of damping, then it is possible to incorporate the effects of this damping in the calculations by the simple expedient of making the modulus of elasticity a complex term. It should be understood that the actual damping in a ship is much larger than that due to the hysteresis in the material. Most of the damping probably comes from sliding between elements of structure and cargo. It is tied to stress only because this procedure offers a good basis for calculations, and is not incompatible with experience. The actual value of the damping constants can only be determined by many comparisons between carefully calculated amplitudes of vibration and those obtained on trials. The damping constants will probably vary from ship to ship. It will be noted in the subsequent results that the damping not only reduces the amplitudes of vibration in the vicinity of the exciting force but also reduces the transmission of the vibration into parts of the structure remote from the excitation.

VI REPRESENTATION OF THE HULL IN THE CALCULATIONS

Because the hull was so carefully defined and because a computer program had been developed that could deal with a wide variety of hull representations, the stage was well set for a broad exploration of many factors that were expected to influence the hull response.

The various calculations that were made on the hull of the SSB(N) 598 are given in Table II. Supporting data giving the constants for longitudinal vibration are given in Figures 6, 7 and 8. For the bending vibration calculations, the arrangement of the stations are given in Figures 9–14 in conjunction with Table III. The location of the stations is given in Table IV. The specific values of mass and stiffnesses in bending vibration are given in the computer input sheets in Appendix J.

In both the longitudinal and the bending vibrations the first computation was a repeat of the earlier one made in Reference 3 (Cases 1 and 12). In addition, a repeat of the calculations with a 10% hysteresis damping was made in order to compare with later calculations (Cases 1a and 12a). The second calculation was of a hull represented by the same number and location of stations as in Reference 3, but with each station assigned the mass and stiffness determined by the more detailed analysis of the hull. (Cases 2 and 13). The comparison between these calculations gives an indication of the possible increase in accuracy that could be gained by the laborious definition of the hull. In longitudinal vibration an exploration was made of the number of masses used to represent the ship (Cases 2, 3 and 4); of the effects of hull damping (Cases 4, 5, 6 and 7) and of the effects of changes in the difficult—to—compute stiffness between the propulsion system and the hull (Cases 4, 8 and 9). The final two runs (Cases 10 and 17) were made for use in computing the hull vibration and indicate the difference in hull response for forces on the propeller and on the hull.

For the bending vibrations there were additional factors to be investigated and so the range of calculations was larger. The difference in hull response as the propeller and

TABLE 11 - SCHEDULE OF HULL VIBRATION CALCULATIONS

Remarks	Check Case	Check Case				·
Damping (coef. of imaginary term is hysteresis damping)	No damping	Ε	Propeller sprung masses, Ax Ax Aivided by (1+0.1;)	Propeller, sprung masses, $\frac{\Delta x}{AE}$ divided by (1+0. 1j)	Propeller, and sprung masses only	Propeller, sprung masses, Ax divided by (1+0.04i)
Water Inertia	Inc, in table	=	Included in Figure 6	Included in Figure 7	Included in Figure 8	Ξ
Excitation	Unit Axial F. Prop. Sys. Sto. 0	Unit Axial F. Hull Sta. 0	Unit Axial F. Propeller	Unit Axial F. Propeller	=	=
Hull Definition	DTMB Report No. 1464 Table 2		24 uniformly spaced masses Figure 6	i6 concentr, masses Figure 7	35 concentr. masses Figure 8	=
Mode	Longi- tudinal	Longi– tudinal	Longi- tudinal	Longi- tudinal	Longi– tudinal	Longi- tudinal
Case No.	-	2	က	4	5	9

TABLE II - SCHEDULE OF HULL VIBRATION CALCULATIONS (continued)

Remarks	б .	Đ.	D.	g,	
Damping (coef. of imaginary term is hysteresis damping)	Propeller, sprung masses △x AE divided by (1+0, 1;)	Propeller, sprung masses ∆x ∆x ĀĒ divided by (1 + 0. 25j)	Propeller, sprung masses $\frac{\Delta x}{AE}$ divided by (1 + 0, 10])	Propeller, sprung masses $\frac{\Delta x}{AE}$ divided by (1+0.10])	=
Water Inertia *	Included in Figure 8	Ξ	u	Included in Fig 8	a
Excitation	Unit Axial Force at Propeller	=	=	Unit Axial force at propeller	Unit Axial force at Sta, 36
Hull Definition	35 concentr. masses Figure 8	=	35 concentr. masses. Fig. 8 increase shaft- hull stiffness from 3.3 x 10 ⁶ to 6.6 x 10 ⁶	35 concentr. masses, Fig. 8 decrease shaft- hull stiffness from 3, 3×10 ⁶ to 1.0×16 ⁶	35 concentr, masses, Fig. 8
Mode	Longi- tudinal	Longi- tudinal	Longi- tudinal	Longi— tudinal	Longi- tudinal
Case No.	7	ω	6	10	=

CONESCO, INC., consultants in engineering science

TABLE II - SCHEDULE OF HULL VIBRATION CALCULATIONS (confinued)

Remarks	Check Case	12 with 10% hysteresis			
Damping (coef. of imaginary term is hysteresis damping)	No damping	i EI and <u>KAG</u> divided by (1+0.10j)	Sprung masses, 1 1 1 EI and KAG divided by (1+0.10i)	Propeller, sprung masses, 1 EI and KAG divided by (1+0.10;)	=
Water Inertia	Included in mass	=	j =0, 87 for 0 <n <3.5="" cps<br="">J=0, 82 for 3,5 cps <n <25.7="" cps<="" td=""><td>=</td><td>n.</td></n></n>	=	n.
Excitation	Unit vertical force at Station 0	=	Unit vertical force at Stern	=	Unit vertical force at Propeller
Hull Definition	DTMB Report No. 1464 Table 1-Subm. Fig. 9 Appendix J1-3	=	24 uniformly spaced masses, hull only Fig. 10 Appendix J4-11	24 uniformly spaced masses + propulsion sys. Fig. 11 Appendix J12-16	" Figure 11 Appendix J17-20
Mode	Vertical Bending	Vertical Bending	Vertical Bending	Vertical Bending	Vertical Bending
Case No.	12	12A	13	41	15

TABLE II - SCHEDULE OF HULL VIBRATION CALCULATIONS (configued)

Remarks		·			
Damping (coef. of imaginary term is hysteresis damping)	Propeller, sprung masses, 1 El and KAG divided by (1+0, 10])	Propeller, sprung masses, I and KAG divided by (1+0.10])	=	Propeller and sprung masses only	Propeller, sprung masses, 1 1 E and KAG divided by (1+0,04;)
Water Inertia	J = 0, 87 for 0 <n<3, 5="" cps<br="">J = 0, 82 for 3, 5 cps <n<25, 7="" cps<="" th=""><th>J=0,87 for Ok.n<3,5 cps J=0,82 for 3,5 cps<n <25,7 cps</n </th><th>J determined for sinusoidal mode shape</th><th>£</th><th>J determined for sinusoidal mode shape</th></n<25,></n<3,>	J=0,87 for Ok.n<3,5 cps J=0,82 for 3,5 cps <n <25,7 cps</n 	J determined for sinusoidal mode shape	£	J determined for sinusoidal mode shape
Excitation	Unit vertical force at Propeller	Unit vertical force at Propeller	=	=	Unit vertical force at Propeller
Hull Definition	16 conc. masses + propulsion sys. Figure 12 Appendix J21-27	35 conc, masses + propulsion sys, Figure :3 Table III - Appendix J28-36	" 137-38	 Fig. 13 Table III Appendix J39-41	35 conc. masses + propulsion sys. Fig. 13 Table III Appendix J42-44
Wode	Vertical Bending	Vertical Bending	Vertical Bending	Vertical Bending	Vertical Bending
Case No.	16	17	18	61	8

TABLE 11 - SCHEDULE OF HULL VIBRATION CALCULATION (continued)

Remdrks			
Damping (coef. of imaginary term is hysteresis damping)	Propeller, sprung masses 1 EI and KAG divided by (1+0.25j)	Propeller, sprung masses 1	=
Water Inertia	J determined for sinusoidal mode shape	J determined for sinusoidal mode shape	=
Excitation	Unit vertical force at Propeller	Unit vertical force at Propeller	=
Hull Definition	35 conc. masses + propulsion sys. Fig. 13 Table III Appendix ,145-47	35 conc. masses + propulsion sys, hull stiffness conn, at B increased from 0, 538×10 ⁶ to 1, 2×10 ⁶ lb/in at C from 0, 232×10 ⁶ to 0, 7×10 ⁶ lb/in Fig. 13 Table III Appendix J48-50	35 conc. masses + propulsion sys. hull stiffness of conn. at B decreased from 0.538x10 ⁶ to 0.20x10 ⁶ lb/in and at C from 0.232x10 ⁶ to 0.10x10 ⁶ to 10x10 ⁶ to 10x10 ⁶ to 10x10 ⁶ to 10x10 ⁶ to 232x10 ⁶ to Appendix J51-52
Mode	Vertical Bending	Vertical Bending	Vertical Bending
Case No.	21	22	23

CONESCO, INC., consultants in engineering science

TABLE 11 - SCHEDULE OF HULL VIBRATION CALCULATIONS (continued)

Hull Definition
35 conc. masses
Fig. 13 Table III
Appendix J53-55
35 conc. masses
+ propulsion sys.
Appendix Joe-5/ Station 34
" Unit vertical
Fig. 13 Table III
Coc violadd
35 conc. masses
+ propulsion sys.
hold all sprung
masses rigidly
Fig. 14
Appendix J60-63

TABLE II - SCHEDULE OF HULL VIBRATION CALCULATIONS (continued)

Remarks	This was not run	This was not run	
Damping (coef. of imaginary term is hysteresis damping)	Propeller, sprung masses, 1 and KAG divided by (1+0.1])	=	Propeller, sprung masses, 1 1 EI and KAG divided by (1+0.1j)
Water Inertia	J determined for sinusoidal mode shape	=	J determined for sinusoidal mode shape
Excitation	Unit axial force at Propeller	Unit vertical force at Propeller	Unit vertical force at Propeller
Hull Definition	Distributed + conc, weights + propulsion sys.	=	35 conc. masses including rotary inertia + propulsion sys. + sprung weights Fig. 13 Table III Appendix J64-70
Mode	Longi- tudinal	Vertical Bending	Vertical Bending
Case No.	28	29	30

* The sectional water inertia values are reduced to account for bending vibration modes by the value J. See Appendix C.

SSB(N) 598

Vertical Bending Vibration Calculations

Case 12 25 Uniformly Spaced Masses Including Ship Water Inertia
Representation

Mass and Stiffness as Given in DTMB Report 1464

Excitation at the Stern (Sta. 1) No Domping Identical but with 10% Hysteresis Damping

Case 12A

Figure 10 - Ship Representation for Calculation

SSB(N) 598

Vertical Bending Vibration Calculations

Case 13 24 Uniformly Spaced Masses
Ship Domped Sprung Masses
Representation Water Inertia J = 0.87 for 0 < n < 3.5 cps

Excitation at Stern (Sta. 41) 10% Hysteresis Damping Figure 11 - Ship Representation for Calculation

SSB(N) 598

Vertical Bending Vibration Calculation

Case 16 16 Ca Ship Damp Representation Water

16 Concentrated Masses

Damped Sprung Masses; Propulsion System
Water Inertia, J = 0.87 for 0 < n < 3.5 cps, = 0.82 for 3.5 < n cps
Excitation at the Propeller (Sta. 36)
10% Hysteresis Damping

Figure 13 - Ship Representation for Calculation

26

Vertical Bending Vibration Calculations

E.	See Following Table
35 Concentrated Masses Damped Sprung Masses - Propulsion System Water Inertia - Representation Varies 1	Damping - Representation Varies Excitation - Various Locations
Cases 17–26 and 30 Ship	Representation

Figure 14 - Ship Representation for Calculation

Į,

TABLE III - 35 MASS REPRESENTATION - VARIATIONS OF VERTICAL BENDING VIBRATION CALCULATIONS

Case No.	Water Inertia	Hull Damping	Excitation	Other
17	J = 0, 87 for 0 <n<3, 5<br="">= 0, 82 for 3, 5<n< td=""><td>10% Hysteresis</td><td>Vertical force at Propeller (Sta. 56)</td><td></td></n<></n<3,>	10% Hysteresis	Vertical force at Propeller (Sta. 56)	
18 Standard	J determined for sinusoidal mode shape	10% Hysteresis	Vertical force at Propeller (Sta. 56)	
19	Standard	No hull damping	Standard	
20	Standard	4% Hysteresis	Standard	
21	Standard	25% Hysteresis	Standard	
22	Standard	Standard	Standard	Stiffened connections between propul- sion system and hull
23	Standard	Standard	Standard	Softened connections be- tween propulsion system and hull
24	Standard	Standard	Moment about the horizontal axis at the propeller	
25	Standard	Standard	Vertical force at stern (Sta. 54)	
26	Standard	Standard	Vertical force forward of the stern (Sta. 51)	
30	Standard	Standard	Standard	Include rotary inertia of the hull cross-section

Vertical Bending Vibration Calculations

Case 27

35 Concentrated Masses

Ship Sprung Masses Assumed Rigidly Connected Representation Water Inertia J Based on Sinusoidal

Mode Shape

Excitation at Propeller (Sta. 39) 10% Hysteresis Damping Figure 15 - Ship Representation for Calculation

TABLE IV - LOCATION OF CALCULATION STATIONS IN FEET FROM FORWARD PERPENDICULAR
(s) indicates sprung mass

	7	1		_			Ţ	_									
27	1.5	9	12	21	ક્ષ	45	55	62	69	8	8	8	107	117	127	136	145
17 - 26 30	1.5	٥	12	21	ଛ	45	55	62	69	88	8	8	(\$)86	(5)86	<u>70</u>	117	127
9	1.5	12	45	69	86	86	(\$)86	127	127(s)	127(s)	155	185	210	210(s)	210(s)	210(s)	210(s)
14, 15	7.5	22.5	37.5	52.5	67.5	82, 5	97.5	97. 5(s)	97. 5(s)	112.5	127.5	127. 5(s)	127. 5(s)	142.5	157.5	172.5	187,5
13	7.5	22. 5	37.5	52.5	67.5	82.5	97.5	97. 5(s)	97. 5(s)	112.5	127.5	127. 5(s)	127.5(s)	142.5	157.5	172.5	187.5
12	367.5	352. 5	337.5	322.5	307.5	292. 5	277,5	262.5	247.5	232.5	217.5	202.5	187.5	172.5	157.5	142.5	127.5
5, 6, 7, 8, 9, 10, 11	1.5	9	12	21	30	45	55	62	69	8	8	86	107	117	127	127(s)	127(s)
4	1.5	12	45	69	86	127	(\$)221	127(s)	155	185	210	210(s)	210(s)	210(s)	210(s)	250	250(s)
	2.5	22.5	37.5	52, 5	67.5	82. 5	97.5	112.5	127.5	127, 5(s) 185	127. 5(s)	142.5	157.5	172.5	187,5	202.5	217.5
1, 2	Prop.	Prop. shaft	Prop. shaft	Thrust brg.	Pwr. plant	367.5	352, 5	337.5	322.5	307.5	292, 5	277.5	262.5	247.5	232, 5	217.5	202.5
Sta. No.	.1.	2	က	4	5	9	7	8	6	01	11	12	13	14	15	91	17

CONESCO, INC., consultants in engineering science

TABLE IV - LOCATION OF CALCULATION STATIONS IN FEET FROM (continued)
FORWARD PERPENDICULAR
(s) indicates sprung mass

a	155	691	185	261	·210	228	250	259	264	280	295	315	326	335	343	348	355. 42
17+26 30	127(s)	127(s)	981	145	155	169	185	161	210	210(s)	210(s)	228	228(s)	228(s)	250	259	264
92	250	259	280	280(s)	280(s)	280(s)	280(s)	280(s)	280(s)	326	348	348(s)	390	360(s)	360(s)	372	Shaft Seal
14, 15	202. 5	217.5	217. 5(s)	217. 5(s)	217. 5(s)	232. 5	232. 5(s)	247.5	262.5	262. 5(s)	262. 5(s)	277.5	292.5	292. 5(s)	292. 5(s)	292. 5(s)	292. 5(s)
13	202. 5	217.5	217.5(s)	217. 5(s)	217. 5(s)	232. 5	232. 5(s)	247.5	262.5	262. 5(s)	262. 5(s)	277.5	292.5	292. 5(s)	292. 5(s)	292. 5(s)	292. 5(s)
12	112.5	97.5	82.5	67.5	52, 5	37.5	22.5	7.5									
5, 6, 7, 8, 9, 10, 11	3%	145	155	169	185	261	210	210(s)	210(s)	228	228(s)	(\$)872	250	250(s)	259	264	264(s)
4	259	280	280(s)	280(s)	280(s)	280(s)	280(s)	326	348	348(s)	360	372	Prop.	Thrust brg.	L. S. Gr.	L. S.pinion 264	H. S. Gr.
	ı	1	1			l		1		()		<u></u>	_		-		
m	217. 5(s)	217.5(s)	217.5(s)	232.5	232. 5(s)	247.5	247.5(s)	262.5	262. 5(s)	262. 5(s)	277.5	292.5	292. 5(s) P	292. 5(s) T	292. 5(s)	307.5	322.5
1,2	187.5 217.5(s)	172. 5 217. 5(s)	157.5 217.5(s)	142.5 232.5	127. 5 232. 5(s)	112.5 247.5			_		2	5	-				322. 5

TABLE IV - LOCATION OF CALCULATION STATIONS IN FEET FROM (continued)
FORWARD PERPENDICULAR
(s) indicates spring mass

Case No. Sta. No.	1, 2	က	4	5, 6, 7, 8, 9, 10, 11	12	13	14, 15	9	17-26 30	22
		337.5	H. S. pinion	280		307.5	307.5	Stern Brg.	264(s)	Shaft Seal
		352, 5	Turb.	280(s)		322.5	322. 5	Prop.	280	360
		352. 5(s)		295		337, 5	337.5		280(s)	372
\dashv		367.5		295(s)		352, 5	352. 5		295	Stem Brg.
		Prop.		295(s)		352. 5(s)	352. 5(s)		295(s)	Prop.
		Thrust Brg.		295(s)		352. 5(s)	352, 5(s)		295(s)	
		Low speed Gr. Hub.		315		367.5	367, 5		295(s)	
		Low speed Pinions		326		367. 5(s)	367. 5(s)		295(s)	
		H. S. geer		335			Shaft Seal		315	
		H. S. Pinions	·	343			Stern Brg.		326	
+		Turb.		348			Prop.		335	
				348(s)					343	
				355, 42					348	

CONESCO, INC., consultants in engineering science

TABLE IV - LOCATION OF CALCULATION STATIONS IN FEET FROM (continued)
FORWARD PERPENDICULAR
(s) indicates spring mass

See No.	1,2	က	4	5, 6, 7, 8,	12	13	14, 15	91	17-26	n
Srd. No.			3	7, 10, 11					30	
3				360					3481(s)	
49				372					355. 42	
ନ				Prop.					Shaft seal	
51				Thrust Brg.					390	
52				L. S. Gr. Hub.					360(s)	
53				L. S. Pinions					(\$)096	
75				H. S. Gear					372	
55				H. S. Pinions					Stern Brg.	
%				Turb.					Prop.	

its connection to the hull is brought into consideration is shown by a comparison between Cases 13 and 14 where the excitation remains on the hull and with Case 15 where the excitation is transferred to the propeller. The influence of the number of masses used to define the ship is shown by a comparison of Cases 15, 16 and 17. A comparison between runs 17 and 18 indicates the effects upon the hull response of different assumptions for the reduction of the sectional water inertia to allow for the modal pattern of the hull vibration (See Appendix C). The effects of hull damping are determined through Cases 18, 19, 20 and 21. The effects of changes in the stiffness of the connections between the propulsion system and the hull are shown by Cases 18, 22 and 23. Case 24 is included to give a base for estimating the hull response to a moment at the propeller and Cases 25 and 26 to forces acting on the hull. Case 27 is included for comparison with Case 18 to show the influences of the sprung masses (whose gross weight is very small) upon the hull response and Case 30 by comparison with Case 18 shows the importance of including the rotary inertia of the hull cross sections in making calculations.

VII RESULTS OF CALCULATIONS

The results of the calculations, which are in the form of deflections at each station for a range of frequencies from 1 to 25 cps, are best shown by curves of hull motion per pound of excitation force at selected positions and phase angle relative to the excitation. These curves are presented in Figures 16 through 60. From a study of these curves it is possible to determine the answers to some of the questions raised in the previous section of this report.

1. Longitudinal Vibration:

In comparing the results of the several longitudinal vibration calculations there are several lessons to be noted but there does not appear to be any trend that could not be expected. Case 7(Figures 21 and 22) is the standard to which other cases are compared.

In comparing Case 1 with Case 7, the first noticeable difference is the larger

Figure 16 - Response Curves in Longitudinal Vibration

Case 1a. Excitation at Propeller. 10% Hysteresis Damping Mass and Stiffness taken from DTMB Report 1464

Figure 17 - Response Curves in Longitudinal Vibration

Case 3. Excitation at Propeller. 10% Hysteresis Damping 24 Uniformly Spaced Masses, Sprung Masses, Propulsion System

Figure 18 - Response Curves in Longitudinal Vibration

Case 4. Excitation at Propeller. 10% Hysteresis Damping 16 Concentrated Masses, Sprung Masses, Propulsion System

Figure 19 - Response Curves in Longitudinal Vibration

Case 5. Excitation at Propeller. Ne Hysteresis Damping 35 Concentrated Masses, Sprung Masses, Propulsion System

Figure 20 - Response Curves in Longitudinal Vibration

Case 6. Excitation at Propeller. 4% Hysteresis Damping 35 Concentrated Masses, Sprung Masses, Propulsion System

Figure 21 - Response Curves in Longitudinal Vibration

Case 7. Excitation at Propeller. 10% Hysteresis Damping 35 Concentrated Masses, Sprung Masses, Propulsion System

Figure 22 - Longitudinal Vibration - Phase Angle Relative to Propeller Excitation, Case 7

Figure 23 - Response Curves in Longitudinal Vibration

Case 8. Excitation at Propeller. 25% Hyesteresis Damping 35 Concentrated Masses, Sprung Masses, Propulsion System

Figure 24 ~ Response Curves in Longitudinal Vibration

Case 9. Excitation at Propeller. 10% Hysteresis Damping
35 Concentrated Masses, Sprung Masses, Propulsion System, Stiffness of Connection
between Hull and Thrust Bearing twice that of Case 7.

Figure 25 - Response Curves in Longitudinal Vibration

Case 10. Excitation at Propeller. 10% Hysteresis Damping

35 Concentrated Masses, Sprung Masses, Propulsion System, Stiffness of Connection between Hull and Thrust Bearing, 30% of that in Case 7.

Figure 26 - Response Curves in Longitudinal Vibration

Case 11. Excitation at Stern. 10% Hysteresis Damping 35 Concentrated Masses, Sprung Masses, Propulsion System

amplitude of hull motion in Case 1. The resonant frequencies occur at about the same frequencies (except that the propeller in Case 7 shows a weak resonance at about 5 cycles that is not present in Case 1.) This corresponds to a mode in which the high speed parts of the system (turbines and high speed gears) vibrate against the propeller and the hull through the soft longitudinal stiffness of the bull gear web. The differences in hull amplitude can be explained by the addition of propeller damping and the damping of the sprung masses to the general hysteresis damping of the hull in Case 7.

A comparison of the effect of the number of stations used in defining the hull can be obtained by considering Cases 3 (24 masses), 4 (16 masses), and 7 (35 masses). The hull motion is the same in Cases 3 and 7 but differs some in Case 4. The propeller motion (which is really of secondary interest) is identical in Cases 3 and 7 except for a slight hump at about 20.5 cps in Case 3. There are slightly more differences between Case 4 and Cases 3 and 7 in the form of slightly sharpened resonances, but these are not large. It is probably better to use more than 16 stations in defining the hull.

When Cases 5, 6, 7, and 8 are compared, it becomes clear that the damping of the propeller and the sprung masses is not sufficient to keep the amplitude of hull vibration to reasonable limits. However, the addition of 4% of hysteresis damping is very effective. 10% and 25% damping make the submarine dead.

Cases 10, 7 and 9 illustrate the effects of the thrust bearing stiffness upon the hull response. In Cases 7 and 9 the effect of the thrust bearing stiffness in the amplitude of motion of the propeller is large but its influence on hull motion is small. However, Case 10 shows that when resonant frequency of the propeller on its thrust bearing matches a natural frequency of the hull, the amplitude of the hull motions can be increased. When this is recognized, it becomes clear that the amplitude of the hull motion caused by relatively high frequency (>15 cps) propeller excitation is strengthened by propulsion systems that have high axial resonant frequencies (i.e., stiff thrust blocks). It is probable that the very low natural frequency that can be obtained by supporting the thrust shoes on an air spring, could be very effective in attenuating the amplitude of hull vibration in the

axial modes.

Case 11 was run primarily for estimating the amplitude of hull motion under service conditions. However, when compared with Case 7, it illustrates that a harmonic force generated at the propeller will generally but not always give smaller ship motions than one generated on the surface of the hull.

2. Vertical Bending Vibration

The most conspicuous influence upon the bending vibration is the inclusion of the propulsion system as a sub-system in the calculations. This influence is first strongly shown even when the excitation is on the ship hull by comparing Cases 13 and 14 and when the excitation is transferred to the propeller, Case 15, results in a hull response that is entirely different from that obtained when the propulsion sub-system is not considered.

A comparison among Cases 15, 16 and 17 in which the hull is represented by 25, 16 and 35 concentrated masses shows that the predominant propeller frequency is much lower in Case 15 than in Case 16 or 17. This is because of the difficulty of tying the propulsion sub-system into the hull properly when required to work with regular station spacings.

In comparing Case 16 with Case 17, it will be noted that although the resonances occur at about the same frequencies, the response is different even at low frequencies.

This result was not expected.

In comparing Cases 17 and 18 in which the treatment of the water inertia effects is changed (See Appendix C for an explanation of this) it is clear that no great change occurs because of the reduced inertia associated with the sinusoidal approximation but that the vibration does carry farther into the hull at the higher frequencies. Thus the amplitude of vibration at the bow at 16 cps is greater for Case 18 than for Case 17.

The effects of hull damping are shown in Cases 19 (no damping) 20 (4% damping) 18 (10% damping) and 21 (25% damping). Referring to Case 19 it is clear that the hull resonances are quite sharp and that the sprung masses and the propeller damping are

Figure 28-Vertical Bending Phase Angle Relative to Stern Excitation, Case 12A

Figure 29-Displacement in Vertical Bending for 1 lb. Excitation at Stem, Care 13

Figure 30-Vertical Bending Phase Angle Relative to Stern Excitation, Case 13

Figure 31 Displacement in Vertical Bending for 1 lb. Excitation at Stem, Case 14

52

Figure 33 - Displacement in Vertical Bending for 1 lb. Excitation at Propeller, Case 15

Figure 34 Vertical Bending Phase Angle Relative to Propeller Excitation, Case 15

Š

Figure 35-Displacement in Vertical Bending for 1 lb. Excitation at Prapeller, Case 16

Figure 36-Vertical Bending Phase Angle Relative to Propeller Excitation, Cate 16

Figure 37-Displacement in Vertical Bending for 1 lb. Excitation at Propeller, Case 17

Figure 38 - Vertical Bending Phase Angle Relative to Prapeller Excitation, Case 17

Figure 39-Displacement in Vertical Bending for 1 lb. Excitation at Propeller, Case 18 (Standard)

Figure 40 - Vertical Bending Phase Angle Relative to Propeller Excitation, Case 18 (Standard)

Figure 41 -Displacement in Vertical Bending for 1 lb. Force of Excitation at Propeller, Case 19

Figure 42Vertical Bending Phase Angle Relative to Propeller Excitation, Case 19

Figure 43- Displacement in Vertical Bending for 1 lb. Excitation at Propeller, Case 20 (Reduced Damping)

Figure 44-Vertical Bending Phase Angle Relative to Propeller Excitation, Case 20 (Reduced Damping)

Figure 45-Displacement in Vertical Bending for 1 lb. Excitation at Propeller, Case 21 (Increased Damping)

Figure 46 Vertical Bending Phase Angle Relative to Propeller Excitation, Case 21 (Increased Damping)

67

Figure 47-Displacement in Vertical Bending for 1 lb. excitation at Propeller, Case 22

Figure 48 Vertical Bending Phase Angle Relative to Propeller Excitation, Case 22

Figure 49-Displacement in Vertical Bending for 1 lb. Excitation at Propeller, Case 23

Figure 50-Vertical Bending Phase Angle Relative to Propeller Excitation, Case 23

Figure 51 - Displacement in Inertial Bending for 1 lb. Excitation at Propeller, Case 24

Figure 52 Vertical Bending Phase Angle Relative to Propeller Excitation, Case 24

Figure 53-Displacement in Vertical Bending for 1 lb. excitation on hull, Case 25

Figure 54-Vertical Bending Phase Angle Relative to Excitation on Hull, Case 25

Figure 55-Displacement in Vertical Bending for 1 lb. excitation on hull, Case 26

Figure 56-Vertical Bending Phase Angle Relative to Excitation on Hull, Case 26

78

Figure 57-Displacement in Vertical Bending for 1 lb. Excitation at Propeller, Case 27

Figure 58 -Vertical Bending Phase Angle Relative to Propeller Excitation, Case 27

Figure 59 - Displacement in Vertical Bending for 1 lb. Excitation at Propeller, Case 30

Figure 60-Vertical Bending Phase Angle Relative to Propeller Excitation, Case 30

sufficient to hold them within reasonable bounds even without any hull damping. Surely the effect of hull damping is two fold. (1) It reduces the amplitude of motion at the point of excitation and (2) it attenuates the relative motion of locations remote from the source of excitation. The value of damping which most closely matches that of the actual submarine will have to be obtained by comparison with the trials on the submarine. These calculations suggest that it requires less hull damping to match trial experience than was previously thought. This is a desirable result because although experience in other structures supports an assumption of 4% hysteresis damping, it is very difficult to explain the source of 10% or more of hysteresis damping.

When comparing Cases 22, 18 and 23, representing a 10 to 1 change in the stiffness of the stern tube bearing the change in the hull response is striking. This increased stiffness bearing (3 times over the standard) moves the propeller resonance from about 11.3 cps to about 19.5 cps as might be expected. What might not be expected is the large effect of this shift upon the hull response. The amplitudes of motion at the lower resonances are very much reduced and those at the higher resonances increased by this shift. The effects of reducing the stiffness of the stern tube bearing are entirely consistent with the above results. Although the amplitude of the propeller is increased this occurs at lower speeds and there is a large decrease in the hull response in the normal operating range. These results surely emphasize the importance of treating the propeller and shafting sub-system as precisely as possible.

Case 24 indicates that the hull is less responsive to a harmonic moment (a moment arm of more than 1000 inches would be required to give equivalence) than to a harmonic force. Cases 25 and 26 as compared with Case 18 indicate that except at the propeller resonance a harmonic force at the stern will generate a slightly higher hull response than the same force at the propeller. As the location of the harmonic force is moved forward Case 26 as compared to Case 25) the response on the hull falls off noticeably.

Case 27 as compared to Case 18 shows that for the lower hull frequencies the damping associated with the sprung masses has a significant effect. It also appears that

the inclusion of the sprung masses with their springing can change the hull frequencies by measureable amounts. However, some of the differences between Cases 27 and 18 are difficult to understand.

Finally, Case 30 as compared to Case 18, indicates that the effects of including the rotary inertia in the hull response calculations of a submarine are very small.

APPENDIX A

PROCEDURE USED IN DEFINING THE SHIP WEIGHT DISTRIBUTION

The basic information used in determing the weight distribution of the ship is given in the "Detailed Weight Summary," SSB(N) 599 dated 7/1/60, prepared by the Electric Boat Division of General Dynamics Corporation. This weight summary is in the form of an IBM print-out. The summary breaks the ship weight into about 250 classifications. Under each classification it lists the plans covering the items contributing to the weight. For each plan it gives the total weight represented by the plan and the vertical and longitudinal center of gravity.

For many of the weights, particularly heavy concentrated items, this information can be used directly for estimating the longitudinal distribution. However, for some important weight elements, such as the hull plating, the plans cover such a large portion of the ship's length that it is necessary to make independent calculations to define the weight distribution. On many weight items, such as electrical wiring, piping and joiner work, the distribution of the component weights had to be estimated from the compartments served and the longitudinal position of the center of gravity.

From the Detailed Weight Summary a chart was prepared in which the weight in each of the several classifications was distributed throughout the ship. A typical section of this chart covering the portion of the ship length between 30 feet and 80 feet from the bow is shown in Figure A-1. It consists of distributed weights and concentrated weights. The distributed weights are added up at the several sections and a curve of distributed weight prepared. The concentrated weights are listed by location and are then distributed over a two foot length. Table A-1 presents a listing of the concentrated weights over the interval covered in Figure A-1. Figure A-2 shows the distributed mass, the spread-out concentrated masses, the captured water and the water ballast for the typical section of the ship between 30 feet and 80 feet from the bow. Finally, all of these curves are added and smoothed

Account						\vdash				
261, 262, 263, Paint and fillers		225		239			33%			
312, Stern castings, 321 Transverse Framing		2675		2540	202	7	2540	2480	3120	a
322, Vert. Keels and Str. 323 Bow Frm, 324 Stern Frm.				· · · · · · · · · · · · · · · · · · ·						
331 Transverse Bulkhead, 342 Watertight Flats						190	54 <u>837</u> 2175			
341 Inner Shell, 361 Welding 30	3090	3050	3300	3480	4220	200	0589	<u> </u>		
344 Inner Shell Inserts	5133	EIZI		1152	<u>E</u>	[7]				1
351 Outer Shell, 361 Welding	3710) 1930 4000 2	2 280	2080	2240		0865 0870 0885		5150 5800	8
353 Outer Shell Inserts, 411 Foundation Mn. Propulsion			→ I&I	318						
										
	8		\$	8		8		R		18

Figure A1 - Longitudinal Location of Hull Weights - Typical Section

Distance From Fwd. Perp.

CONESCO, inc. consultants in engineering science

Account							
412 Fdn. Aux. to Mn. Prop. 413 Fdn. Misc. 414 Fdn. Elec.	82	83			zz	**	88
415 Hull and Bkhd. Liners, 416 Shaft Tubes, 417 Fdn. Ord.	42 [78]]	224		[8]	39		}
421 Pressure Proof Inclosures, 422 N. P. P. Inclosures	3328	1221	Teg Teg		3520	486	· +
423 Secondary Hull Div., 424, Shield Supp. and Inclosure		162			438		
431 Superstructure Framing							
432 Superstructure Plating							+
433 Fdn. Ext. to Hull, 434 S. S. openings, 436 S. S. Covering		_ EZZ		 -	<u> </u>		
443 Guards and Fairwater, 444 Stabl.							
				,			•
06	4	95		8	R		18

Distance From Fwd. Perp.

Figure A-1 (continued)

CONESCO, inc. consultants in engineering science

Account				·		
452, 453, 455 Platform Decks and Covering	128	82	354	229	3%	1181
462, 463, 465 Fairwater Bridge, Trackers, Fdn.						
511, Rudders, 513 Stern Diving Pl., 515 Fairwater Planes						
521 Gages, 524 Pipe Hangers, 531 Mast and Spars				52		
532 Liferails, 534 P. P. Lockers, 535 Hull Protectors		•		13		
537 Ladders and Stairs, 538 Label Plates, 539 Fittings			•	155		
541 P. P. Hatch Trunks, 542 P. P. Doors				768		
543 P.P. Man holes, 544 Ld. Hatches, 545 Non P.P. apenings	182			251		ห
				ì		
E	8	\$	ક	8	R	8

Distance From Fwd. Perp.

Figure A-1 (continued)

Account					
547 P.P. Hatch Covers, 551 Flood Valves, 101 552 Ballast Tank Vents	213		761		
553, 554 Sea Connections, Ship and Machinery	141	S		41	
561 Lead Bailast	002 11' 630 0227	200 58, 450	88		1.200 1.200
571, 572, 573, 574 Joiner work, Lockers, Berthing	3	408	·	88	
575, 576 Insulation, Thermal and Acoustic	338	520		\$65	
577 Galley and Laund. Appl. 578 Health Physics				328	
611, Windlass, 613 Anchors, 614 Capstons, 617, 619 Gear	1348	2474	₽ 1348	·	
621, 622, 624, 625, 625 Steering and Diving Gears		·			
œ	\$	S	8	R	8

Distance From Fwd. Perp.

Figure A-1 (continued)

CONOSCO, inc. consultants in engineering science

Account						
627 Gyro. Stabil; 631, 632, 633 Peri- scopes; 634 Speed Ind.			1	223		2
636, 637 Mag. and Gyro Compass, 638 Nav. Masts, 639 Signalling						
641, 643 Battery and Ships Ventl. 644 Refrig.	61	77	220		1384	191
645 Air Cond. 646 Htg., 647 Gas Anal. and Burning		10			15	
648 Mn. Oxygen, 649 CO ₂ Removal		19 (11.300	1	5	1465	5
651→ 662 Trim and Dr., F. W., Distl., Plumbing, Cooling, F. O., L. O.	. 191	353	1282		211	
671678 Comm. Announcing, Alarm, Elec. Ltg. control	<i>1</i> 9	124			242	
680-+696 Radar, Sonar, etc.	22	134	1502		63	
698 Mach. Shop, 711 Turbines, 712 Clutch, 713 Shafting, 714 Brgs., 715 Prop. 716 Grs.						
08	9	- 8		- 8		8

Distance From Fwd. Perp.

Figure A-1 (continued)

CONESCO, inc. consultants in engineering science

Account			•		
718 732 Mn. Prop. Cond., Stuff. Bxs., Cooling Control, Adjuncts., L. O. Prop. Motor and Contr.				38	
733 Switch Bds., 734 Pwr. Wiring, 737 Wireways, 738 Sw. Bds.	41	201	7 921	362	
741, 742, 743, 744, 746, 747, 748, 749 Mn. and Aux Steam, Cond., Feed Drain, Insul. and Control					·
751 → 758 Batteries and Accessories					7550
761-767 H. P. and L. P. air, compr. piping -	168 794	865	155	160 P	
771-+779 Aux. Pwr. Sys.	,				
781→789 Reactor and Primary Plant					
791->793 Hydraulic Pwr. Plants	14	22		12	
8	30	8	0	8	88

Distance From Fwd. Perp.

Figure A-1 (continued)

CONESCO, inc. consultants in engineering science

Account								
821→851 Torpedo Tubes and Assoc. Equipment	2312 1707	130	1857		586			
853->868 Missile Tubes and Fire Control (863 carried with 962)								
901908 Repair Parts	230		421				780	
920->965 Small Arms, Stores, Provisions	3		1103				853	
966 →968 + 863 Ammun., Missiles, Torpedoes, Ord. Stores	1142		1217		25		88	
972→985 Water, Air, Oil, etc.	-	125	315	254	386	15	327	1768
987 Officers, crew and effects		\ %	ಚಿ				259	
991→999 Fixed Liquids	725 819	725	160				245]62	8
•								
	8	\$	5	B		8	R	8

Distance From Fw. Perp.

Figure A-1 (continued)

CONESCO, inc. consultants in engineering science

Account											1
971 Ballast Tank and Safety Tank Water	3339 1800	11, 200	8885	જ્ઞ	13	13815		20365			<u> </u>
Total wt/ft not including Ballast and Safety Tank Water	0l 5 †l		1 010 5	1 78 75	23234	L Z6 7 1	52536	787 22	78722	*** L	89252
					***************************************				-		
				• •				• •			
	***							٠.			
				٠				•	····		
	R		-8		-8		- 8		R		− 78

Distance From Fwd. Perp. Figure A-1 (continued)

TABLE A-1 - SSB(N) 598 - WEIGHTS LOCATED BETWEEN 30' and 80' FROM THE BOW THAT ARE TREATED AS CONCENTRATED WEIGHTS

Distance from Bow ft.	Weight Account Number	Weight Ibs		Remarks -
30 30, 5 33 37 36	682→696 541→542 344 344 611→619	1708 9015 5139 2158 1348		Fws. Escape Trunk
36, 5 41, 6 42 42	421 417 344	3358 791 1152)	5041	
42 42	353 421 611→619	318 1297 2474	5241	
42. 5 44. 8 50 50. 5	433 417 421 611- → 619	223 244 25 1348		
53. 4 53. 4	537 682 → 696	159 205	364	
54 54 54	543 →545 641 →644 648 →649	155 520 11, 500	12, 175	Oxy. Tanks and Piping
56 56 56 56	344 422 627-+634 451 → 462	83 151 522 2937	3693	
56, 5 56, 5	541→542 543→544	768 155	923	

TABLE A-1 - (continued)

Distance from Bow ft.	Weight Account Number	Weight Ibs	Remarks
57. 5	415	671	
57. 5	733→738	176	
57. 5	761 <i>-</i> ⊶767	160 } 1007	
58, 6	331	54, 332	Trans, Bkhd.
59	991→999	2457	
61	641-≠644	1984	
74	561	12, 940	Lead Ballast
74, 5	353	1383	
75	421	936	

 $\begin{tabular}{ll} \textbf{Distance from Forward Perpendicular, ft.} \end{tabular}$

Figure A-2 - Section of Weight Distribution Curve A-12

slightly and the resulting curve used to represent the weight distribution on the ship. This curve is given in Figure 3. For a check this curve is integrated and, with captive water deducted, compared with the submerged displacement of the ship.

With the general process explained, we will now discuss some of the details of the process of distributing the weights along the hull. For some of the main categories of hull weight it is necessary to compute the weight distribution along the hull. This is not particularly laborious in the case of the inner and outer hull shell plating, since the areas must be computed in the stiffness determination. Lead ballast is a very significant item of weight and can be concentrated within a small length. It is therefore well to define this weight closely from the plans. Also the water ballast is a very significant weight item. Normally, this is easily defined from the weight in a particular tank but in the case of the GEORGE WASHINGTON it was necessary to study the distribution of weight in the forward ballast tanks. Items like watertight flats are usually broken down into separate compartments and can be distributed quite easily by brief reference to the plans to ascertain the location, extent and shape. The framing is broken down in the Detailed Weight Summary into groups of four or five frames and the weights of these are quite easily distributed over their longitudinal span.

The distribution of the weights under some classifications such as furniture, wiring, and piping are more difficult to make. Where it is clear from the plan title that the weights represented by the plan fall within a certain span of length, they can be distributed either uniformly or by some simple distribution over the length of the span. For convenience in determining weight distribution for such weight categories as interior painting, electrical wiring, telephone wiring, etc., the interior of the hull was considered to be divided in ten sections as indicated in Table A-2. Using these sections it is possible to estimate a weight factor that will indicate what proportion of the weight will fall within each section. The application of this process to the interior paint, account 261, which weighs 28, 207 pounds is illustrated in Table A-3. The application of the process to the distribution of the weight of power wiring through the ship (weight about 45, 000 lbs) is illustrated in Table A-4. The

Figure 3 - Submenged Hull Weight SSP(N) 598 GEORGE WASHINGTON,

TABLE A-2 - HULL DIVISIONS FOR ESTIMATING WEIGHT DISTRIBUTION

Section	Compartment	Fr. Nos.	Distances from F.P.	Length
0	Bow	0 → 13	0 → 25, 25	25, 25
1	Torpedo Rm. Fwd.	→ 20	→ 40.83	15.58
2	Torpedo Rm. Aft.	→ 26	→ 57.5 0	16,67
3	Living Qtrs.	→ M3	→ 92.75	35, 25
4	c. o. c.	→ M17	→ 132. 92	40, 17
5	Missile Rm.	→ M44	→ 208. 92	76.0
6	Missile Compt. Aft.	→ 44	→233.67	24, 75
7	Reactor Compt.	→ 52	→253.67	20.00
8	Aux. Mach. Space	→ 64	→ 285, 67	32.0
9	Engine Rm. Fwd.	→ 77	→320.17	34, 50
10	Engine Rm. Aft.	→ 92	→ 353, 67	33, 50
11	Stern	→ 102	→373, 50	19, 83

TABLE A-3 - DISTRIBUTION OF WEIGHT OF INTERIOR POINT(

Compartment	Length	Weighting Factor	Product	wt/ft
, 1 ₃ 1 .	15,6	0.7	10. 9	34
2	16.7	1	16.7	48
3	35	3	105	145
4	40	3	120	145
5	76	2	152	97
6	25	1	25	48
7	20	1	20	48
8	32	1.5	48	73
9	34	1.5	51	73
10	34	1	34	48
			583	

wt/ft =
$$\frac{28,207}{583}$$
 x $\frac{\text{product}}{\text{length}}$ = 48.4 weighting factor

TABLE A-4 - DISTRIBUTION OF WEIGHT OF POWER WIRING

Assume);		-								
٥	1 cable from c	ompartn	nent 2	? to com	partme	ent 9					
Ь	1 cable from c	ompartn	nent 3	to con	partme	ent 9		•			
c :	2 cables from a	ompartn	nent 4	to com	partme	ent 9					
d	1 cable from a	ompartn	nent 5	to com	partme	ent 9					
•	2 cables from a	ompartn	nent ć	to com	partme	ent 9					
f	cable from c	ompartn	nent 7	to com	partme	ent 9					
9	2 cables from a	ompartn	nent 8	to com	par+me	ent 9					
h :	3 cables in c	ompartn	ent 9	•							
i :	3 cables in a	ompartn	ent 1	0 to co	mpatr	ent 9					
wt/ft	compartment	a	ь	c	d	•	f	9	h	i	Total
25	2	17									17
50	3	35	35								70
99	4	40	40	80							160
124	5	76	76	152	76						380
148	6	- 25	25	50	25	50					175
198	7	20	20	40	20	40	20				160
248	8	32	32	64	32	64	32	64			320
320	9	34	34	68	34	68	34	68	102	100	440
73	10									100	100
											1822

wt/ft in compartment = $\frac{\text{Total}}{\text{Grand Total}} \times \frac{45,000}{\text{Length of compartment}}$

application to other categories such as the announcing system, the telephone system, etc., can be understood.

Equipment weights which exceed 2000 pounds and are shock mounted are treated as sprung masses (See Appendix G). The fairwater planes, the stabilizers and the stern planes are especially studied as elastic structures in vertical vibration but are considered as rigid masses in the axial direction. The rudders are considered to be rigidly connected in both vertical and longitudinal vibration. Properly, the stabilizers and control surfaces should have been incorporated in the calculation program as elastic sub-systems but since the program was not developed when the hull was defined, this was not done.

The "captured" water, water in the free flooding sections of the ship, is treated as part of the mass of the ship. Consider, for example, the water between the superstructure and the hull. Beneath the superstructure the water has a relatively free flowing space. However, the air vent in the superstructure deck is only a very small percentage (less than 5%) of the superstructure deck area. Since it normally passes air this area is adequate for venting but water flowing through it would have to pass at more than 20 times the mean velocity in the tank. As a consequence for any vibration when the submarine is under water the water cannot flow through the superstructure vents in sufficient quantity to allow any significant free flow and the water is indeed "captured" and forced to move with the ship.

APPENDIX B

VIRTUAL INERTIA OF ENTRAINED WATER IN LONGITUDINAL MODES

1. Determination of an Ellipsoid to Represent the Hull

The distribution of the inertia of the entrained water on the SSB(N) 598 is assumed to be the same as that of the ellipsoid of revolution which most closely fits the hull. The first step in determining the inertia of the entrained water therefore is to find the dimensions of the ellipsoid which most closely matches the hull. The process that is used is the "Method of Least Squares" and is described in Reference 8.

Although the axes of the portions of the submarine that are surfaces of revolution are offset in the vertical direction and some of the cross-sections are not circular, it was assumed that the prolate ellipsoid which matches the breadth of the submarine most closely would adequately represent the submarine. The origin of the axes of coordinates was taken at the centerline at the bow and the x direction was taken along the centerline of the bow and stern sections. The equation of the ellipse that rotates into the ellipsoid is $\frac{(x-b)^2}{2} + \frac{y^2}{c^2} = 1$ where a, b and c are to be determined by the method of least squares to give the ellipsoid that most closely approximates the submarine.

Assume for a first approximation that $a = b = 190^{\circ}$ and $c = 16.5^{\circ}$. From the equation of the ellipse

$$y = c \left(1 - \frac{(x-b)^2}{a^2} \right)^{1/2}$$

Expand this value of y in a Taylor's series.

$$y = y_{a,b,c} + \frac{\partial y}{\partial a_{a,b,c}}$$
 $\Delta a + \frac{\partial y}{\partial b_{a,b,c}}$ $\Delta b + \frac{\partial y}{\partial c_{a,b,c}}$ $\Delta c + \cdots$

where:

$$\frac{\partial y}{\partial a} = c \left[1 - \frac{(x-b)^2}{a^2} \right]^{-1/2} \frac{(x-b)^2}{a^3}$$

$$\frac{\partial y}{\partial b} = c \left[1 - \frac{(x-b)^2}{a^2} \right]^{-1/2} \frac{(x-b)}{a^2}$$

$$\frac{\partial y}{\partial c} = \left[1 - \frac{(x-b)^2}{a^2}\right]^{1/2}$$

Letting s equal the sum of the squares of the differences, v_i , between the actual value of y, γ_i , and the value computed by the equation for y.

$$s = \sum_{i=1}^{n} v_{i}^{2} = \sum_{i=1}^{n} (y - \overline{y}_{i})^{2}$$

$$= \sum_{n=0}^{n} \left\{ c \left[1 - \frac{(x-b)^{2}}{a^{2}} \right]^{-1/2} + c \left[1 - \frac{(x-b)^{2}}{a^{2}} \right]^{-1/2} \frac{(x-b)^{2}}{a^{3}} \Delta a \right\}$$

$$+ c \left[1 - \frac{(x-b)^2}{a^2} \right]^{-1/2} \frac{(x-b)}{a^2} \triangle b + \left[1 - \frac{(x-b)^2}{a^2} \right]^{1/2} \triangle c - \widetilde{y_i} \right\}^2$$

The values of Δa , Δb and Δc which will minimize s are found by setting

$$\frac{\partial s}{\partial (\Delta a)} = \frac{\partial s}{\partial (\Delta b)} = \frac{\partial s}{\partial (\Delta c)} = 0$$

This yields the normal equations:

$$2\sum_{i=1}^{n} v_{i} c \left[1 - \frac{(x-b)^{2}}{a^{2}} \right]^{-1/2} \frac{(x-b)^{2}}{a^{3}} = 0$$
B(1)

$$2\sum_{i=1}^{n} v_{i} c \left[1 - \frac{(x-b)^{2}}{a^{2}}\right]^{-1/2} \frac{(x-b)}{a^{2}} = 0$$
 B(2)

$$2\sum_{i}^{n} v_{i} = \left[1 - \frac{(x-b)^{2}}{a^{2}}\right]^{-1/2} = 0$$
 B(3)

After substituting the value of v_i, these equations reduce to:

$$c \sum_{i}^{n} (x-b)^{2} + \frac{c}{a^{3}} \Delta a \sum_{i}^{n} \left[1 - \frac{(x-b)^{2}}{a^{2}} \right]^{-1} (x-b)^{4}$$

$$+ \frac{c}{a^{2}} \Delta b \sum_{i}^{n} \left[1 - \frac{(x-b)^{2}}{a^{2}} \right]^{-1} (x-b)^{3} + \Delta c \sum_{i}^{n} (x-b)^{2}$$

$$- \sum_{i}^{n} y_{i} \left[1 - \frac{(x-b)^{2}}{a^{2}} \right]^{-1/2} (x-b)^{2} = 0$$

$$c \sum_{i}^{n} (x-b) + \frac{c}{a^{3}} \Delta a \sum_{i}^{n} \left[1 - \frac{(x-b)^{2}}{a^{2}} \right]^{-1} (x-b)^{3}$$

$$+ \frac{c}{2} \Delta b \sum_{i}^{n} \left[1 - \frac{(x-b)^{2}}{a^{2}} \right]^{-1} (x-b)^{2} + \Delta c \sum_{i}^{n} (x-b)^{2}$$

$$-\sum_{i=1}^{n} \left[1 - \frac{(x-b)^{2}}{a^{2}} \right]^{-1/2} (x-b) = 0$$

$$c\sum_{i=1}^{n} \left[1 - \frac{(x-b)^{2}}{a^{2}} \right] + \frac{c}{a^{3}} \Delta a \sum_{i=1}^{n} (x-b)^{2}$$

$$+ \frac{c}{a^{2}} \Delta b \sum_{i=1}^{n} (x-b) + \Delta c \sum_{i=1}^{n} \left[1 - \frac{(x-b)^{2}}{a^{2}} \right]$$

$$-\sum_{i=1}^{n} \gamma_{i} \left[1 - \frac{(x-b)^{2}}{a^{2}} \right]^{1/2} = 0$$

$$B(3a)$$

To find the values of $\triangle a$, $\triangle b$ and $\triangle c$, tables are formed for the quantities

$$\frac{n}{\Sigma} \left[x - b \right], \frac{n}{\Sigma} (x - b)^{2}$$

$$\frac{n}{\Sigma} \left[1 - \frac{(x - b)^{2}}{a^{2}} \right]$$

$$\frac{n}{\Sigma} \left[1 - \frac{(x - b)^{2}}{a^{2}} \right]^{-1} (x - b)^{2}, \frac{n}{\Sigma} \left[1 - \frac{(x - b)^{2}}{a^{2}} \right]^{-1} (x - b)^{3}, \frac{n}{\Sigma} \left[1 - \frac{(x - b)^{2}}{a^{2}} \right]^{-1} (x - b)^{4}$$

$$\frac{n}{\Sigma} y_{i} \left[1 - \frac{(x - b)^{2}}{a^{2}} \right]^{-1/2}, \frac{n}{\Sigma} y_{i} \left[1 - \frac{(x - b)^{2}}{a^{2}} \right]^{-1/2} (x - b)$$

$$\frac{n}{\Sigma} y_{i} \left[1 - \frac{(x - b)^{2}}{a^{2}} \right]^{-1/2} (x - b)^{2}$$

Values of y_i are picked from the graph of the half breadths at the 15' - 9-7/8" water line as plotted in Figure B-1 for six values of x.

The results are given in Table B-1.

Substituting the values from Table B-1 into the equations B(1a), B(2a) and B(3a) yields the f following:

17, 380
$$\triangle a \sim 5690 \triangle b + 88,700 \triangle c = 146,000$$
 B(1b)
0. 2138 $\triangle a \sim 0.00456 \triangle b + 3.543 \triangle c = 2.0$ B(2b)
29, 95 $\triangle a \sim 132 \triangle b + 10 \triangle c = 2152$ B(3b)

From a simultaneous solution of these:

$$\triangle a = 0.517'$$
 a improved = 190' + 0.517" = 190.52'
 $\triangle b = -16.12'$ b improved = 190' - 16.12' = 173.88'
 $\triangle c = 0.515'$ c improved = 16.50' + 0.515' = 17.015'

Therefore the ellipsoid that most closely matches the submarine is:

$$\frac{(x-173,88)^2}{(190,52)^2} + \frac{(y^2+z^2)}{(17,015)^2} = 1$$

The curve of this quantity is plotted in Figures B-1 and B-2. It is obvious that although this ellipsoid matches the ships hull as closely as is possible by any single ellipsoid, there is still a considerable discrepancy at the ends.

Because of the complexity of dealing with a closer simulation of the ship, the simple ellipsoid has been considered to be an adequate representation at the present time. The methods of Reference 9 would have to be developed further before they would be applicable to the problem of a shape differing from an ellipsoid.

Figure B-1 - Half Breadth of SSB(N) 598 at 15' - 9-7/8" Water Line and Radius of Matching Ellipsoid

-1 (x-b)* 2, 260×10 7, 214×105 4, 180×10⁶ 537×10° 2.7×10⁶ 14.4×10 220×10° 646,000 338,000 347,000 27,000 58, 300 191,300 TABLE B-1 - MEAN SQUARE DETERMINATION OF ELLIPSOID -1(x-b)³ 14.12×106 -4, 13×10⁶ -24.6×10⁶ -0.066×10⁶ +. 244×10⁶ 2,00×10⁵ (q-x 2,115 -2670 -675 +973 1,740 -3800 $-1(x-b)^{2}$ 88, 400 288, 540 144, 500 31, 780 18, 200 1,670 3,990 Ü 11-(x-b)² 3.82 10.93 16.15 14.62 10.51 0.902 3.543 0.664 $|z_{/1}(x-y)|^{1/2}$ 25, 600 88, 700 12, 100 $(x-b)^2$ 16,900 7,68 3,600 28,900 .978 815 82 950 538 4 -130 \$ +110 091- (q-x 2 12.9 16.5 12.9 15.0 16.5 15.0 15.4 ©.0 15.4 7.1 Ξ **~** 35 8 8 22 250 350 8 350 8 8 35 8 × ×

Figure B-2 - Match of Ellipsoid with Vertical Projection of Main Hull

2. Analytical Representation of the Vibration Pattern

It is also necessary in the considerations of equivalent mass to work with a pattern of vibration. For this purpose the nodal pattern at the natural frequency of 10, 40 cps, as computed for the mass and stiffness reported in Reference 3 was used. This nodal pattern is plotted in Figure B-3. For convenience in the computations a deflection curve of the form $\delta = a_1 (173.88 - x) + a_2 (173.88 - x)^3$

$$= a_1 x' + a_3 x'^3$$

was assumed and the values of a_1 and a_3 to match the experimental curve determined by the method of Least Squares. The resulting analytical expression for the deflection is:

$$8 = 4.11 \times 10^{-6} - 11.08 \times 10^{-12} (x')^{3}$$

This is plotted on Figure B-3 to indicate the adequacy of the match.

3. The Distribution of the Entrained Water Inertia on the Ellipsoid

We are now concerned with the water inertia of an ellipsoid of major axis, $a_1=190.52^{\circ}$ minor axes, b_1 and $c_1=17.015^{\circ}$

vibrating in a longitudinal mode such that $\delta = 4.11 \times 10^{-6} \times -11.08 \times 10^{-12} \times^3$ where x is measured from the center of the ellipsoid.

The velocity in the longitudinal direction is = jωδ

Express this as:

$$v_A = Ax - Bx^3$$

Because of the poisson ratio effects there will be a radial velocity to the hull associated with the longitudinal velocity.

The longitudinal strain = $\frac{\partial \delta}{\partial x}$

Figure B-3 - Representation of Normal Mode Deflection by a Functional Relationship

Corresponding to this longitudinal strain there will be a poisson strain $\sigma \frac{\partial \delta}{\partial x}$, where σ is a ratio that depends upon the poisson ratio of the material of the submarine and the ratio of frame area to shell area. Hence the poisson velocity = y (or z) $\sigma \frac{\partial \delta}{\partial x}$ and

$$v_e = \sigma y (A - 3 Bx^2)$$

歌をからまない!

$$w_e = \sigma z (A - 3 Bx^2)$$

Lamb ¹⁰ and are well presented in Reference 11. The methods involve the expression of the properties of the ellipsoid and the vibration in terms of ellipsoidal coordinates. In this manner a potential function can be obtained. In most works with virtual inertia it is possible through energy considerations to obtain an equivalent mass for the water vibrating with the ellipsoid. However, in this case the effects of the entrained water are distributed over the full length of the ellipsoid and in order to find the effects of this entrained water at any section of the hull it is necessary to compute at each longitudinal location the component of the force associated with the dynamic pressures between the hull and the water that result from the modal pattern. This force, when related to the amplitude of vibration at this location, can be used to determine the equivalent mass of the water at this location.

The discussion of the geometry and the kinematics of a vibrating ellipsoid given in Reference 11 is directly applicable to this problem and therefore will not be repeated. Because the concern of this study is axial vibration rather than bending vibrations the applications of the general theory differ.

Express the velocities in ellipsoidal coordinates

$$v_e = Ax - Bx^3$$

$$= Ak_{L}\zeta_o - B (k_L \zeta_o)^3$$

$$v_{e} = \sigma y (A - 3 Bx^{2})$$

$$= \sigma k (1 - u^{2})^{1/2} (\zeta_{o}^{2} - 1)^{1/2} \cos \theta \left[A - 3B (ku\zeta_{o})^{2} \right]$$

$$w_{e} = \sigma k (1 - u^{2})^{1/2} (\zeta_{o}^{2} - 1)^{1/2} \sin \theta \left[A - 3B (ku\zeta_{o})^{2} \right]$$

Since these velocities are those in the surface of the ellipsoid this indicated by ζ_0 , the ellipsoid representing the hull.

$$F(\mu, \theta) = \mu \nu_{e} + (1 - \mu^{2})^{1/2} \zeta_{o} (\zeta_{o}^{2} - 1)^{-1/2} (\nu_{e} \cos \theta + w_{e} \sin \theta)$$

$$= \mu \left[Ak_{\mu} \zeta_{o} - B (k_{\mu} \zeta_{o})^{3} \right]$$

$$+ (1 - \mu^{2})^{1/2} \zeta_{o} \sigma k (1 - \mu^{2})^{1/2} \left[A - 3B (k_{\mu} \zeta_{o})^{2} \right]$$

$$= \mu \left[Ak_{\mu} \zeta_{o} - B (k_{\mu} \zeta_{o})^{3} \right] + \sigma k \zeta_{o} (1 - \mu^{2}) \left[A - 3B (k_{\mu} \zeta_{o})^{2} \right]$$

$$= A \left[k_{\mu}^{2} \zeta_{o} + \sigma k \zeta_{o} (1 - \mu^{2}) \right] - B \left[(k_{\mu} \zeta_{o})^{3} + 3 \sigma k \zeta_{o} (1 - \mu^{2}) k_{\mu} \zeta_{o}^{2} \right]$$

$$= A \left[k_{\mu}^{2} \zeta_{o} + \sigma k \zeta_{o} (1 - \mu^{2}) \right] - B \left[(k_{\mu} \zeta_{o})^{3} + 3 \sigma k \zeta_{o} (1 - \mu^{2}) k_{\mu} \zeta_{o}^{2} \right]$$

$$= A \left[k_{\mu}^{2} \zeta_{o} (1 - \sigma) + \sigma k \zeta_{o} \right] - B \left[(k_{\mu} \zeta_{o})^{3} \mu (1 - 3\sigma) + \frac{3}{\mu} \sigma (k_{\mu} \zeta_{o})^{3} \right]$$

Applying the condition that k F $(\mu, \theta) = \frac{\partial \phi}{\partial \xi}$, to the general solution for velocity potential in ellipsoidal coordinates, i.e.,

$$\phi = \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} (B_n^s \sin s\theta + C_n^s \cos s\theta) P_n^s (\mu) Q_n^s (\zeta)$$

leads to

$$\sum_{n=0}^{n} \sum_{s=0}^{s} (B_n^s \sin s\theta + C_n^s \cos s\theta) P_n^s (\mu) \dot{Q}_n^s (\zeta_0) = kF (\mu, \theta)$$

Since the F (μ , θ) is independent of θ this condition is only met where s=0 Therefore B_n^s falls out of the solution

$$C_n^s$$
 becomes C_n
 P_n^s becomes P_n
 \dot{Q}_n^s becomes \dot{Q}_n and the equation becomes,

 $\tilde{\Sigma}_{n=0}^{\infty} C_n P_n(\mu) \dot{Q}_n(\zeta_0) = kF(\mu, \theta)$

Hence

$$C_{n} = \frac{2n+1}{4\pi \dot{Q}_{n}(\zeta_{o})} k \times 2\pi \int_{-1}^{1} F(\mu, \theta) P_{n}(\mu) d\mu$$

$$= \frac{2n+1}{2\dot{Q}_{n}(\zeta_{o})} k \int_{-1}^{1} Ak\zeta_{o}(1-\sigma) \int_{-1}^{1} \mu^{2} P_{n}(\mu) d\mu$$

$$+ A \sigma k\zeta_{o} \int_{-1}^{1} P_{n}(\mu) d\mu - Bk^{3}\zeta_{o}^{3} (1-3\sigma) \int_{-1}^{1} \mu^{4} P_{n}(\mu) d\mu$$

$$-38\sigma k^{3}\zeta_{o}^{3} \int_{-1}^{1} \mu^{2} P_{n}(\mu) d\mu$$

And using Table 1 of Reference 11

$$C_{o} = \frac{1}{2\dot{Q}_{o}(\zeta_{o})} \quad k \left\{ \frac{Ak\zeta_{o}}{3} \quad (2+4\sigma) - Bk^{3}\zeta_{o}^{3} \quad (\frac{2}{5} + \frac{4}{5}\sigma) \right\}$$

$$C_{1} = 0$$

$$C_{2} = \frac{5}{2\dot{Q}_{2}(\zeta_{o})} \quad k \left\{ \frac{4}{15} \quad Ak\zeta_{o} \left(1-\sigma\right) - Bk^{3}\zeta_{o}^{3} \quad (\frac{8}{35} + \frac{4}{35}\sigma) \right\}$$

$$C_{3} = 0$$

$$C_{4} = \frac{9}{2\dot{Q}_{4}(\zeta_{o})} \quad k \left\{ -\frac{1}{3}k^{3}\zeta_{o}^{3} \quad (1-3\sigma) \quad \frac{16}{315} \right\}$$

$$C_{n} = 0, \ n \ge 5$$

Therefore:

$$\phi = \frac{1}{\dot{Q}_{o}(\zeta_{o})} \qquad k (1 + 2\sigma) \left[\frac{Ak\zeta_{o}}{3} - \frac{Bk^{3}\zeta_{o}^{3}}{5} \right] P_{o}(\mu) Q_{o}(\zeta)$$

$$+ \frac{1}{\dot{Q}_{2}(\zeta_{o})} \qquad k \left[\frac{2}{3} Ak\zeta_{o} (1 - \sigma) - \frac{2}{7} Bk^{3}\zeta_{o}^{3} (2 + \sigma) \right] P_{2}(\mu) Q_{2}(\zeta)$$

$$- \frac{8}{35} \frac{1}{\dot{Q}_{4}(\zeta_{o})} \qquad k Bk^{3}\zeta_{o}^{3} (1 - 3\sigma) P_{4}(\mu) Q_{4}(\zeta)$$

When the potential function of the fluid is determined, the usual practice for obtaining the mass of the entrained water is to compute the kinetic energy of the fluid and by relating this to the amplitude of motion to determine the equivalent mass. However, for this problem the distribution of the equivalent mass along the length of the hull is desired, and the amplitude of vibration is not a constant value but a function of the longitudinal position along the hull.

To avoid these difficulties the distribution of the equivalent mass is obtained by computing the pressure on the ellipsoid generated by the vibratory motion, multiplying this pressure by the projected area normal to the longitudinal axis for each unit of axial length. The equivalent mass per unit length at a given axial position is then the force per unit of length divided by the product of the amplitude of vibration at the location and the square of the circular frequency.

The pressure associated with a velocity potential function is:

$$p = p \left[\frac{d\phi}{dt} + \frac{q^2}{2} + f(t) \right]$$

In this relation q^2 is the square of the fluid velocity, which for the small motions is negligible. f(t) is an external pressure that does not exist.

Thus for this problem

$$p = \rho \frac{d\phi}{dt} = \rho i\omega\phi$$

since the ellipsoid is vibrating in simple harmonic motion.

Since

部の 大きの でいってい

$$a = k\zeta_0$$
 $c = (\zeta_0^2 - 1)^{1/2}$

$$\zeta_{o} = \frac{\alpha}{\sqrt{\alpha^{2}-c^{2}}} \qquad k = \sqrt{\alpha^{2}-c^{2}}$$

$$\frac{p}{|\omega p|} = \frac{1}{Q_{0}(\zeta_{0})} \sqrt{\alpha^{2} - c^{2}} (1 + 2\sigma) \left[\frac{A\alpha}{3} - \frac{B\alpha^{3}}{5} \right] P_{0}(\mu) \alpha_{0}(\zeta_{0})$$

$$+ \frac{1}{Q_{2}(\zeta_{0})} \sqrt{\alpha^{2} - c^{2}} \left[\frac{2}{3} A\alpha (1 - \alpha) - \frac{2}{7} B\alpha^{3} \right] (2 + \sigma) P_{2}(\mu) Q_{2}(\zeta_{0})$$

$$- \frac{8}{35} \frac{1}{Q_{4}(\zeta_{0})} \sqrt{\alpha^{2} - c^{2}} B\alpha^{3} (1 - 3\sigma) P_{4}(\mu) Q_{4}(\zeta_{0})$$
The axial force = $p \times \pi \left[y^{2} - (y + \frac{dy}{dx} \times 1)^{2} \right]$

$$= - p \times \pi \times 2 y \frac{dy}{dx} \times 1$$

Since for an ellipsoid

$$y \frac{dy}{dx} = - \frac{xc^2}{a^2}$$

The axial force = p $(2\pi \frac{c^2}{a^2} \times)$ lb per ft.

The entrained inertia =
$$\frac{2\pi p \frac{c^2}{a^2} \times \frac{c^2}{a^2}}{\omega^2 \delta}$$

The mathematical expression for the deflection curve which was derived earlier is:

$$\delta = \alpha_1 \times -\alpha_3 \times^3$$

or in terms of velocity coefficients:

$$\delta = \frac{A}{I\omega} \times - \frac{B}{I\omega} \times^3$$

The entrained inertia therefore =

$$-\frac{2\pi\rho}{A-Bx^{2}}\frac{c^{2}}{x} \times \sqrt{a^{2}-c^{2}}\left\{\frac{(1+2\sigma)}{\dot{Q}_{o}(K_{o})}\left[\frac{A}{3}-\frac{Ba^{2}}{5}\right]P_{o}(\mu)Q_{o}(K_{o})\right\}$$

$$+\frac{1}{\dot{Q}_{2}(K_{o})}\left[\frac{2}{3}A(1-\sigma)-\frac{2}{7}Ba^{2}(2+\sigma)\right]P_{2}(\mu)Q_{2}(K_{o})$$

$$-\frac{8}{35}\frac{1}{\dot{Q}_{4}(K_{o})}Ba^{2}(1-3\sigma)P_{4}(\mu)Q_{4}(K_{o})$$

where:

$$\mu = \frac{x}{a}, Bx^2 = Ba^2 \mu^2$$

For the submarine SSB(N) 598 $a = 190.52^{\circ}$ $c = 17.015^{\circ}$

$$\chi_{o}^{2} = \frac{(190.52)^{2}}{(190.52)^{2}} - (17.015)^{2} = \frac{36,297.87}{36,008.36} = 1.00804008$$

$$\chi_{o}^{3} = 1.012084$$

$$\chi_{o}^{4} = 1.0161448$$

$$Q_{o}(\zeta) = \frac{1}{2} \log \frac{\zeta + 1}{\zeta - 1}$$

$$Q_2(\zeta) = \frac{1}{2} (3\zeta^2 - 1) Q_0(\zeta) - 3/2 \zeta$$

$$Q_4(\zeta) = \frac{1}{8} (35\zeta^4 - 30\zeta^2 + 3) Q_0(\zeta) - \frac{35}{8} \zeta^3 + \frac{55}{24} \zeta$$

$$\dot{Q}_{o}(\zeta) = \frac{1}{2} \frac{\zeta - 1}{\zeta + 1} \frac{(\zeta - 1) 1 - (\zeta + 1) 1}{(\zeta - 1)^{2}}$$

$$=-\frac{1}{\zeta^2}-1$$

$$Q_{2}(\zeta) = \frac{1}{2} (6\zeta) Q_{0}(\zeta) + \frac{1}{2} (3\zeta^{2} - 1) (\frac{-1}{\zeta^{2} - 1}) - 3/2$$

$$= 3\zeta Q_{0}(\zeta) - \frac{3\zeta^{2} - 2}{\zeta^{2} - 1}$$

$$Q_4(\zeta) = \frac{1}{8} (35 \times 4\zeta^3 - 60\zeta) Q_0(\zeta) - \frac{1}{8} \frac{(35\zeta^4 - 30\zeta^2 + 3)}{\zeta^2 - 1}$$

$$-\frac{105}{8} g^2 + \frac{55}{24}$$

$$\dot{Q}_4(\zeta) = \left[\frac{35}{2} \zeta^3 - \frac{15}{2} \zeta\right] \quad Q_0(\zeta) - \frac{1}{8} \left[35 \zeta^4 - 30 \zeta^2 + 3\right]$$

$$+105\xi^{4} - 105\xi^{2} - \frac{55}{3}\xi^{2} + \frac{55}{3} \right] \frac{1}{\xi^{2} - 1}$$

$$= (\frac{35}{2}\xi^{3} - \frac{15}{2}\xi) Q_{o}(\xi) - \frac{1}{2}(35\xi^{4} - \frac{115\xi^{2}}{3} + \frac{16}{3}) \frac{1}{\xi^{2} - 1}$$

$$= \frac{5}{2}(7\xi^{3} - 3\xi) Q_{o}(\xi) - \frac{1}{6}(105\xi^{4} - 115\xi^{2} + 16) \frac{1}{\xi^{2} - 1}$$

$$Q_o(\zeta_o) = \frac{1}{2} \log \frac{2.00401}{0.00401} = \frac{1}{2} \left[0.6951 - (1.3893 - 6.9078) \right]$$

$$= \frac{1}{3} (6.2136) = 3.1068$$

$$Q_2(\zeta_0) \approx \frac{1}{2} (3 \times 1.00804 - 1) \times 3.1068 - 3/2 (1.00401)$$

= 1.6382

$$Q_4(\zeta_0) = \frac{1}{8} \left[35 \times (1.00804)^2 - 30 (1.00804) + 3 \right] \quad 3.1068 - \frac{35}{8} (1.00804)^{\frac{3}{2}} + \frac{55}{24} \zeta_0$$

$$\dot{Q}_{o}(\zeta_{o}) = -\frac{1}{\zeta^{2}-1} = -\frac{1}{.00804008} = -124.377$$

$$\dot{Q}_2$$
 (ζ_0) = 3 × 1.004012 × 3.1068 - 124.377 (3× 1.00804-2)
= 9.35768 - 127.377
= -118.019

$$\dot{Q}_4$$
 (ζ_0) = $\frac{5}{2}$ (7×1.012084 - 3 × 1.004012) 3.1068
- $\frac{1}{6}$ (105 × 1.0161448 - 115 × 1.00804008 + 16) $\frac{1}{.00804008}$
= 31.6315 - 140.3509

$$b^2 = (17.015)^2 = 289.51$$
 $\sqrt{a^2 - c^2} = \sqrt{36,008.36}$
= 189.76

 $\sigma = approx. 0.20$

The entrained inertia =

$$-\frac{2\pi\rho\times289.51\times189.76}{190.52} \left\{ (1.40)\times\frac{3.1068}{-124.377} \left[\frac{A}{3} - \frac{B\alpha^2}{5} \right] P_o(\mu) + \frac{1.6382}{-118.019} \left[\frac{2(0.8)}{3} A - \frac{2}{7} (2.2) B\alpha^2 \right] P_2(\mu) - \frac{8}{35} \times \frac{1.10556}{-108.72} (1-0.6) B\alpha^2 P_4(\mu) \frac{1}{A-B\alpha^2\mu^2} \right\}$$

$$\rho = 1.99 \frac{\text{lb sec}^2}{\text{ft}^4}$$

$$\frac{Ba^2}{A} = \frac{11.08 \times 10^{-12}}{4.11 \times 10^{-6}} \times (190.52)^2 = 0.0976 \text{ for 2nd mode of SSB(N)} 598$$

The entrained inertia then becomes:

3600
$$\left[0.01093 \, P_0^{}(\mu) + 0.00655 \, P_2^{}(\mu) - 0.0000976 \, P_4^{}(\mu) \right]$$

$$\frac{1}{1-0.0976}$$
_µ²

= 39.4
$$\left[P_{0}(\mu) + 0.599P_{2}(\mu) - 0.00892P_{4}(\mu)\right] \frac{1}{1 - 0.0976\mu^{2}}$$

The values of this entrained inertia are computed in Table B-11 and plotted in Figure B-4.

4. The Distribution of Entrained Water Inertia on the Actual Hull

Since the shape of the hull differs from the ellipsoid it can be expected that the inertia of the entrained water will differ from that on the idealized ellipsoid. To investigate how much difference this might be, assume that the pressure generated on the hull at any position along the longitudinal axis is the same for the actual submarine as for the ellipsoid. When this is done the distribution of water inertia is quite different as is shown in Figure B-5. It will be noted that the blunt bow and the discontinuities at the superstructure tend to give large values of water inertia and the pointed stern tends to decrease

Figure B-4 - Water Inertia for an Ellipsoid representing SSB(N) 598

TABLE 8-11 - CALQULATION OF LOCAL VALUES OF ENTRAINED MASS

<u>γ</u> = μ	P ₂ (μ)	0. 599 P ₂ (μ)	Ρ ₄ (μ)	00892P ₄ (μ)	Σ	1 1-, 00976	2 M
0	 50	300	0. 375	0033	0.697	1	27. 43
1	1	0. 599	1	00892	1.590	. 9902	63. 30
0.5	<i></i> 125	0749	28906	. 0026	0. 9277	. 9976	36, 60
0.75	. 34375	. 2057	35010	. 0031	1. 2088	. 9945	47.9
0. 25	40625	-, 2438	. 15771	0014	. 7548	. 9994	29. 78

Total Entrained Water Mass

μ	Mass/ft	SM	Product
0	27, 43	1	27. 43
0. 25	29. 78	4	119. 12
0.5	36, 60	2	73. 20
0.75	47. 90	4	191.60
1.0	63, 30	1	63. 30
		Total	474.65

Mass = 474.65 \times $\frac{190.52}{4\times3}$ \times 2 = 15, 380 lbs. This is identical with the gross value of entrained mass used in the longitudinal vibration calculations in Reference 3.

Using Pressures for an Ellipsoid and the Area Curve of the Actual Ship

the water inertia. Because of the large difference between the water inertia given by Figure B-5 and that of an idealized ellipsoid shown in Figure B-4, it would be highly desirable to develop an accurate method of computing the water inertia on an irregular body but the procedures for doing this are not developed and are outside of the scope of this project.

For the longitudinal vibration studies on the SSB(N) 598 the values of water inertia given in Figure B-5 are used. It should be noted that in the longitudinal modes the total mass of the entrained water is only 15,000 pounds (for either the idealized ellipsoid or the actual hull shape). This is about 1% of the submerged weight of the hull. The small value of this entrained mass contrasts strongly with the large values of entrained mass in the bending modes.

5. A Brief Consideration of the Effects of Fluid Elasticity upon the Entrained Mass and Energy Dissipation of a Prolate Ellipsoid Vibrating Longitudinally

When a ship is vibrating in its bending modes it has been shown that there is no significant energy dissipated in the water. This can be explained in terms of the length of a wave length in the ship at a given vibration frequency as compared with that of sound in the water at the same frequency. It can also be shown that the entrained water carried by the ship in bending vibration can be computed accurately without considering the compressibility effects of the water. However, when a submarine is vibrating axially it is known that vibratory energy is fed into the water – explained in terms of the wave length of the axial vibration being much closer to the wave length of the sound in the water. For this reason it is desirable to have a solution for the entrained mass and for the energy dissipation of an ellipsoid vibrating longitudinally.

The solution for the vibration of a prolate ellipsoid in a compressible fluid is similar to that for the incompressible fluid but somewhat more complicated. Where the fluid is incompressible the equation for fluid potential is $\nabla^2 \psi = 0$ but when the fluid is

compressible the scalar wave equation $\nabla^2 \psi = \frac{1}{C^2} \frac{a^2}{at_1^2} \psi$ applies.

For simple harmonic motion

$$\Psi (x, y, z, t) = \Psi (x, y, z) e^{-i\omega T}$$

and the equation simplifies to the scalar Helmholtz equation

$$\nabla^2 \Psi + \beta^2 \Psi = 0, \quad \beta = \omega / C$$
 B(4)

For the submarine problem, it is desirable to express this equation in ellipsoidal coordinates (u, ζ, θ) . These are related to the rectangular coordinates by:

$$x = k\mu\zeta \qquad 1 \le \zeta \le \infty$$

$$y = k(1 - \mu^2)^{1/2} (\zeta^2 - 1)^{1/2} \cos \theta \qquad -1 \le \mu \le 1 \qquad B(5)$$

$$z = k(1 - \mu^2)^{1/2} (\zeta^2 - 1)^{1/2} \sin \theta \qquad 0 \le \theta \le 2\pi$$

foci are at $x = \pm \frac{1}{2} k$

Then the Helmholtz equation takes the form:

$$\frac{\partial}{\partial \gamma} \left[(1-\mu^2) \frac{\partial \psi}{\partial \mu} \right] + \frac{\partial}{\partial \zeta} \left[(\zeta^2 - 1) \frac{\partial \psi}{\partial \zeta} \right] + \frac{\zeta^2 - \mu^2}{(1-\mu^2)(\zeta^2 - 1)} \frac{\partial^2 \psi}{\partial \theta^2} = -(\zeta^2 - \mu^2) \beta^2 k^2 \psi$$

$$= -(\zeta^2 - \mu^2) \beta^2 k^2 \psi$$

This may also be written in the form:

$$\frac{\partial}{\partial \mu} \left[(1-\mu^2) \frac{\partial \psi}{\partial \mu} \right] + \frac{\partial}{\partial \zeta} \left[(\zeta^2 - 1) \frac{\partial \psi}{\partial \zeta} \right] + \frac{1}{(1-\mu^2)} \frac{\partial^2 \psi}{\partial \theta^2} + \frac{1}{(\zeta^2 - 1)} \frac{\partial^2 \psi}{\partial \theta^2}$$

$$+ \beta^2 k^2 (\zeta^2 - \mu^2) \psi = 0$$

$$B(60)$$

When we let $\psi = \phi(\theta) S(4) J(\zeta)$

The equation separates to the ordinary differential equations

$$\phi'' + m^2 \phi = 0$$
 B(7a)

$$\frac{d}{d\xi} \left[(\xi^2 - 1) \frac{\partial J}{\partial \xi} \right] - (A - h^2 \xi^2 + \frac{m^2}{\xi^2 - 1}) \quad J = 0$$

$$B(7b)$$

$$\frac{d}{d\mu} \left[(1 - \mu^2) \frac{\partial S}{\partial \mu} \right] + (A - h^2 \mu^2 - \frac{m^2}{1 - \mu^2}) \quad S = 0$$
 B(7c)

where h = Bk and m and A are separation constants.

The solutions of B(7a) are $\phi(\theta) = \cos m\theta$

Equations B(7b) and B(7c) are identical and so the angular function S and the radial function J are solutions of the same equation over different ranges of the variable. These equations can be carried to a solution through the use of spheroidal wave functions.

12, 13, 14, Studies of the radiation of noise from submarine hulls [1, 1], [1] show that for the

frequency range of propeller generated excitations, the influence of compressibility of the water is small and will tend to decrease the amount of virtual mass. Since this mass is already small, the effects of compressibility have not been explored any farther.

APPENDIX C

VIRTUAL INERTIA OF ENTRAINED WATER IN BENDING MODES

Since the studies of Lewis 15 and Taylor 16 on the effects of entrained water upon ship hull vibrations made practical the predictions of natural frequencies by calculations, (11, 17-23 incl) there have been only moderate advances in the understanding of water inertia. Because the complexity of the water inertia problem it has been difficult to include these advances in the calculation methods that are applied to ships.

The most practical method of including the water inertia in the calculation of ship bending modes still appears to be that used by Lewis and by Taylor. This consists of computing the water inertia per unit length of each section of the ship as though each were an infinitely long prism moving in parallel motion. The result of these calculations is a curve of sectional virtual masses. These sectional inertias are then reduced by a factor, generally designated by J, which represents the reduction in inertia that occurs because of the longitudinal shape of the hull and the modal pattern of vibration. The values of J are generally taken to be the same as those that can be computed for a translating and a vibrating ellipsoid as developed by Lamb 10. Lamb 10 in his theoretical presentation includes a table of values of J for a translating and for a rotating rigid ellipsoid. Both Lewis and Taylor determined J for the bending ellipsoid. More recently, Macagno and Landweber 11 developed J values for two mode and three mode vibration. The shapes of the modal patterns were those obtained experimentally on the GOPHER MARINER²⁴ and were approximated by second and fourth order equations in the case of the two node vibrations and by third and fifth order equations in the case of the three node vibrations. The J values that are obtained for prolate ellipsoids of different ratios of major to minor axes that are vibrating in these several modes are plotted in Figure C-1. The surprising thing about this information is the change

Figure C-1 - Longitudinal Inertia Coefficients for Motions of an Ellipsoid

in the value of J that occurs because of the more detailed representation of the same modal pattern as the approximating function is changed from a second to a fourth degree equation in the two node case, and by a third to a fifth degree equation in the three node case. As far as we know, there have been no determinations of J for higher modes of bending vibration than the 3 node.

The effects of multi-noded vibration patterns upon the J values are best investigated through consideration of an infinitely long circular cylinder vibrating vertically with a sinusoidal variation of amplitude along its length. This problem was first considered by Kennard²⁵ and is discussed in more detail in Appendix B of Reference 26. According to this development

$$J = -\frac{k_1(\alpha)}{k_1'(\alpha)} = \frac{k_1(\alpha)}{k_1(\alpha) - \alpha k_0(\alpha)}$$

where k_0 and k_1 are the first and second modified Bessel functions of the second kind, k_1 is the first derivative of k_1 and $\alpha = \frac{\pi c}{N}$ where c is the radius of the cylinder and N is the distance between nodes. A plot of J as a function of a is given in Figure C-2. It is useful to have this function expressed as a simple power series in a. Within the limits $0.6 < \alpha < 4$

$$J = 0.0609 + 0.715 \frac{1}{\alpha} - 0.19093 \frac{1}{\alpha^2} + 0.00297 \frac{1}{\alpha^3} + \cdots$$

and within the limits $0 < \alpha < 0.6$ $J \cong 1.030 - \frac{4.90}{\alpha}$

A comparison of the values of the longitudinal inertia coefficient, J, as determined for an ellipsoid by Macagno and Landweber for two noded and three noded vibrations and as determined from Kennard's relationship is given in Figure C-3. The Macagno and Landweber study values are based upon a detailed of the potential flow. It will be noted that the infinite cylinder simplification matches the theoretical value of J quite closely for the 2 node

Figure C-2 – Longitudinal Inertia Coefficients for a Long Cylinder Deflecting . in Sinusoidal Waves of Length L

C-5

vibration but appears to be low (i.e., to overcorrect the water inertia) for the three node vibration. Intuitively, it would be expected that the infinite cylinder simplification would match the higher modes more accurately than the lower modes, since the end effects are of less importance.

For the present hull vibration calculations, it was decided to apply a longitudinal inertia coefficient correction to all calculations. The magnitude of this correction is taken to be 0.87 for low frequencies until in the calculation it is found that the deflection curve crosses the axis at two points. For subsequent calculations the longitudinal inertia coefficient for the calculations at any calculation frequency is taken as the value computed for the next lower frequency. The computer ascertains the distance between the most remote zero crossings and divides this distance by one more than the number of intermediate crossings to find the average distance between nodes. It then computes the value of a and the value of J for a long circular cylinder using the series formula. The water inertias used in the subsequent calculation are the section water inertias (2 dimensional values) multiplied by this determined value of longitudinal inertia coefficient, J.

APPENDIX D

STIFFNESSES OF THE HULL IN THE AXIAL DIRECTION, in VERTICAL BENDING AND IN VERTICAL SHEAR

The sectional stiffnesses (stiffness per unit length) of the hull are computed for the axial direction, AE; for vertical bending, EI; and for vertical shear, KAG, and the three values are plotted in Figure 2 along the length of the submarine. These stiffness plots reflect the discontinuities that occur as the thickness of the plating changes.

1. Calculation of Axial Stiffness

The main contributor to the axial stiffness is the plating of the outer and inner shells. Since most of the sections are circular, the cross-sectional area of the steel is easy to compute. This area is corrected for the effects of slope and for the stiffening effect of the transverse framing (See Appendix E). In addition to the shell plating, longitudinal framing, keels and stringers, where continuous, contribute to the longitudinal stiffness. The contribution of such heavy longitudinal structures as pressure tanks and long heavy foundations to the longitudinal stiffness is difficult to assess. There is no adequate theory that can be used for this and so judgement is required. In Appendix F these problems are discussed and some methods developed for use in assessing the stiffness contributions of discontinuous structures.

Because of its light weight and its flexible connection to the hull, the contribution of the superstructure plating to longitudinal stiffness is neglected. Light platform decks are not included for the same reasons.

The stiffness between two stations is found by forming the summation of I/AE for the sections of constant area and finding the reciprocal of the summation.

Figure 2 - SSB(N) 598 - Axial, Shear and Bending Stiffness

2. Calculation of Stiffness in Vertical Bending

As with the axial stiffness, the major resistance to bending is given by the inner and outer shell plating. The stiffening effects of the frames is included in evaluating the bending stiffness but not any correction for the conical shape of the hull. Discontinuous longitudinal members are generally of less importance in bending than in axial stiffness and are treated in the same manner. The center of gravity of the section inertia is taken at the centerline of the ship. This is not entirely proper and it would probably be advisable in future calculations to compute the location of the center of the structural section relative to the centerline of the ship and to correct the moment of inertia for the offset. Figure D-2 is a computing form developed for this purpose.

The bending stiffness between two calculation stations is the reciprocal of the summation (or integral) of I/EI for sections of constant moment of inertia over the interval between the stations.

3. Calculation of Stiffness in Vertical Shear

The stiffness in vertical shear for a unit length (KAG) is found by multiplying the components of the cross-sectional area by shear coefficients, K, and the shear modulus, G. Again the major elements in the shear resistance are the inner and outer shells. These elements, since they are circular shells, carry a shear coefficient of 1/2. Other elements that provide shear stiffness in the vertical direction are vertical sides of tanks and foundations. For these the shear coefficient is one and is applied only to vertical webs working between heavy flanges. If these webs are discontinuous the transfer of the loading into and out of them must be estimated. Horizontal areas do not contribute to the shear stiffness.

When the overall shear stiffness between two sections is required, this is obtained from the sectional stiffnesses by forming the sum of I/KAG for the individual sections of constant KAG. The reciprocal of this summation is the shear stiffness.

		•	-													
		.,2	¥									AK ²	→			
STIFFNESS	٠.		Moment													
S S S S S S S S S S S S S S S S S S S	From F		ပ္ပံ		,							4				
AND BE	Distance From F. P.		Shear											AE =	=	KAG =
AL, SHEAR		Area	Corr.axial													
AL AXI		Ā	Corr.													
FOR LOC			Axial										octore			
CALCULATION FOR LOCAL AXIAL, SHEAR AND BENDING STIFFNESS	Frame No.		Dimensions								ε	8	(3) Discontinuous Structure			
			Structure								* Corrections for					

#.

Figure D-2 - Computing Form for Determining Sectional Stiffness Characteristics

APPENDIX E

INFLUENCE OF THE CONICAL SHAPE AND OF THE TRANSVERSE FRAMING UPON THE STIFFNESS OF A SUBMARINE HULL

A conical hull has a somewhat lower axial stiffness per unit length than that of a cylindrical hull of the same radius and hull thickness. A hull that is stiffened by frames, because it is not free to expand and contract under Poisson's ratio effects, will be somewhat stiffer than the unsupported hull. The problem of the conical shell is considered in Reference 27 and the effects of transverse framing upon the longitudinal stiffness is mentioned in Reference 28.

Consider the conical shell reinforced by circumferential frames. A sketch of the shell is shown in Figure E1.

Figure E-1 - Diagram of Shell Supported by Circumferential Frames

Assume that the effects of the frames are uniformly distributed along the length of the shell, that the frames can carry a circumferential load but no axial load and that the ratio of the frame area to the shell area per unit length is β . Let the pressure normal to the axis between the frames and the shell be $P_{\vec{k}}$.

The following equations of equilibrium and deflection will apply (See Ref. 27).

$$V = V_0 \cdot \frac{r_0}{r}$$
 E1(a)

$$N_{x}$$
 (the meridional force) = $\frac{V}{\sin \phi}$ E1(b)

$$N_{A}$$
 (the hoop force) = rP_{r} E1(c)

$$\delta = r \epsilon_{\theta}$$
 E2(a)

$$\triangle = -8 \cot \phi \int_{x_0}^{x} + \frac{1}{\sin \phi} \int_{x_0}^{x} \epsilon_x dx$$
 E2(b)

For shell:
$$\epsilon_{\theta} = \frac{N\theta}{Eh} - \mu \frac{Nx}{Eh}$$
 E3(a)

For Frames:
$$\varepsilon_{\theta} = \frac{1}{\beta} \frac{N\theta}{Eh}$$

$$\varepsilon_{x} = \frac{Nx}{Eh} - \mu \frac{N\theta}{Eh}$$
 E3(c)

Equating E3(a) to E3(b) and solving for $N\theta$

$$N\theta = \frac{\beta \mu N x}{1 + \beta}$$

Therefore Ex =
$$\frac{Nx}{Eh}$$
 $\left(1 - \frac{\beta \mu^{\frac{2}{1+\beta}}}{1+\beta}\right)$

$$\delta = r \frac{\mu N x}{(1+\beta)Eh}$$

$$\frac{d\Delta}{dx} = \frac{\mu N x}{(1+\beta)Eh} \quad \frac{dr}{dx} \cot \phi + \frac{1}{\sin \phi} \quad \frac{Ny}{Eh} \quad (\frac{1-\beta \mu^2}{1+\beta})$$

$$= \frac{Nx}{Eh} \left[\frac{\mu}{1+\beta} \frac{\cos^2\phi}{\sin\phi} + \frac{1}{\sin\phi} \left(1 - \frac{\beta\mu^2}{1+\beta}\right) \right]$$

$$= \frac{V}{Eh \sin^2 \phi (1+\beta)} \left[\mu \cos^2 \phi + 1 + \beta (1-\mu^2) \right]$$

The unit length stiffness for an axial load is:

$$K = \frac{2\pi r h E \sin^2 \phi (1 + \beta)}{\mu \cos^2 \phi + 1 + \beta (1 - \mu^2)}$$

The correction to the area stiffness is therefore

$$\frac{\sin^2 \phi (1+\beta)}{\mu \cos^2 \phi + 1 + \beta(1-\mu^2)}$$

For a circular cylinder $\phi = \frac{\pi}{2}$ and

the correction factor =
$$\frac{1+\beta}{1+\beta(1-\mu^2)}$$

This agrees with Schade's value. 29

The maximum carrection factor will occur at a bulkhead where β may be considered very large and in this case will be $\frac{1}{1-\mu^2}=1.1$ (about a 10% increase).

For normal framing β is about 0.4 and the correction factor in the cylindrical section 1.03, i.e., the stiffness is increased about 3% by the frame support.

For an unsupported conical shape the correction factor
$$=\frac{\sin^2\phi}{1+\mu\cos^2\phi}$$

For the steepest conical shapes on the 598 (the ends of the double hull section) $\phi = 66.9^{\circ}$. In this case the stiffness factor uncorrected for framing = 0.739 (about a 25% decrease in stiffness). For the outer surface of the hull the correction is normally only a few per cent and would only be this large near the bow of the ship.

APPENDIX F

TREATMENT OF DISCONTINUOUS STRUCTURES

Any complex structure, such as a ship, has many discontinuous structural elements in it. In the submarine that was studied the more important discontinuous elements are the tops and sides of pressure proof tanks and the tanks that are integral with the foundations.

The problem can be idealized quite easily, since the hull is heavy and cylindrical bending of the hull can be neglected. The problem becomes one of the stress and strain distribution in the base plate and the stiffening plate where neither moves normal to its plane. The three examples illustrated in Figure F-1 cover all the cases necessary for the prediction of the effect of the discontinuous structure on the stiffness of the hull.

The base plate can be defined by a width w (= $2\pi r$ for the cylinder) and thickness h. The discontinuous plate can be characterized by a length, l, a width, b, and a thickness, t.

There appears to be no solution to this problem in the readily available literature and although it would be possible to develop a solution, this would require some time and is outside of the scope of this study. The results of similar studies of the effects of flange widths upon the effectiveness of beams are presented by Schade in References 29 and 30. The loading condition considered by Schade that would most closely match the problems defined above is the beam subjected to a constant moment. However, he does not develop his curves for this case. The nearest case is a beam carrying a uniform load. For a practical working procedure it was decided to utilize the curve of effective breadth ratio developed by Schade for a flange connected to double webs and carrying a uniform load. A plot of this curve (Figure 10(a) page 41 of Reference 29) is given in Figure F-2. This curve, when entered with the length of the discontinuous member, L, and the width, B, equal to the plate width when fastened on two sides or twice the plate width when fastened on one side, gives the ratio between the effective plate width and the actual plate width at the center of the plate. An application will make the process

Fig. FI Discontinuous plate attached to an Axially Stressed Plate that is restrained from bending.

Figure F-2 - Effective Breadth Ratio for Plate Attached at Both Sides

clear. One of the ballast tank tops in the GEORGE WASHINGTON is 20.3 feet long and 22, 6 feet wide and is attached to the hull at both sides. The ratio of length to breadth is 0.90. Entering the curve for effective breadth ratio, the value of λ is found to be 0.35. Thus the effective breadth is taken as 0.35 × 22.6 × 12 or 95" and the stiffening effect of the tank top at its center would be that of an additional steel area of the hull whose area is 95" times the plate thickness. It will be noted that this stiffening effect is that at the center. As the ends of the tank are approached the stiffening effects will fall off until they become zero at the ends. The rate of fall off is assumed to be parabolic. Thus at the quarter length of the tank top the assumed equivalent breadth would be 3/4 of 95" or 72".

*

APPENDIX G

PROCEDURES USED IN DEFINING THE SPRUNG MASSES IN THE SHIP

One of the primary difficulties in determining the response of a ship is the definition of the structure in terms of mass and elastic constants. Normally in the past, the ship has been defined as an elastic beam to which masses representing the weights of the ship structure, cargo, and entrained water are considered to be rigidly attached. More recently, attention has been given to representing weights that are not rigidly connected to the main hull girder as masses connected to the girder through a simple spring. In applying this procedure, it is necessary to define both the main hull girder and what constitutes a rigid connection, since obviously all connections are only relatively rigid. For the purposes of the vibration calculations consider that vibrations of the ship are those of the main shear members (usually sides but sometimes also bulkheads connecting the upper and lower flanges, the deck and the bottom) and that the rigidity of the connection of all weights to these shear members, called the main hull girder, is to be investigated in determining whether a mass is sprung or not. Also for the purposes of vibration calculations any mass whose connection through the ship structure to the main hull girder is sufficiently rigid to give a natural frequency if held rigidly at the hull equal to 1.5 or more times the hull frequency that is being investigated can be considered as rigidly connected, but otherwise should be considered to be flexibly connected. Flexibly connected members can be concentrated weights (shock mounted equipment are of this category) whole portions of the ship structure or cargo and in some cases the ship bottom with its water inertia. Because of the importance of the propeller and shafting system as a flexibly mounted system, particular attention has been paid to it (See Appendix H) and a procedure developed for finding the response of elastic systems (the hull and the propulsion system) elastically connected (through the bearings).

For the submarine, fortunately, most of the structure is rigid and the only masses that are sprung are those that are shock mounted. These consist of definite machine components

generally assembled on a common bed plate to form a package comprising a machine assembly on a common foundation that is connected to the hull through members that are highly elastic, the shock mounts. The characteristics of these mounts – both the stiffness in several directions and the damping have been accurately determined. It is thus possible to characterize these sprung-masses quite simply and accurately. In order to set a reasonable limit upon the number of masses that are treated only those masses whose weight exceeds 2000 pounds are considered. The items considered, their weights, stiffnesses and damping and location are given in Table. I.

Because of the large mass of entrained water associated with them and because they are located at the stern of the ship, where the effects of mass are pronounced, the most important sprung masses are the control surfaces (stabilizers and stem diving planes) in vertical bending. The dynamic responses of these structures to a harmonic vertical motion was presented in Reference 2. For the purposes of these calculations, these surfaces are considered to be adequately represented by the sum of a rigidly attached mass and a simply sprung mass of such size that together they represent the predicted response of these structures which was presented in Reference 2. In future studies they should be incorporated in the calculations as subassemblies.

TABLE I - SSB(N) 598 GEORGE WASHINGTON SPRUNG WEIGHTS

Flexibly-Mounted	Distance from	Weight	1	1.7		
Floment	(o // c-v/		Buo	Longituainai	Vertical	ical
	r.r. (reer)	(sq)	Stittness	Damping *	Stiffness	Damping *
			lb/in	lb sec/in	lb/in	lb sec/in
Each of two Fair-	86	Long. 12, 771	Rigid			-
water diving planes		Vert. 7,750			Rigid	
		37, 300			122, 200	60 n
Gyro. Hyd. System	125	6, 900	12, 400	24.6	31,440	29.3
L.P. Blower	128	3, 145	5, 720	11.5	13, 600	12.6
O ₂ Gen. Plant	213	15, 200	11,600	27.8	50,000	60.7
Air Cond. Set	217	15, 200	1:, 200	19.3	51,600	41.6
400 Cycle M. G. sets	224	12, 26 j	8, 100	i 5. 2	38, 700	33, 3
H.P. Air Comp.	228	3, 450	091 '9	25. 25	14, 400	14.5
Main Coolant Pumps	251.5	51, 893	907, 000	192	Rigid	
Trim and Drain Pumps	268	5, 300	9, 000	15.9	16.000	16.4
300 KW M.G. Sets	276	32, 920	20,640	107	46,000	2
H. P. Air Comp.	292	3, 991	7, 150	14.2	16, 700	16.7
Air Cond, Sets each of 2	294	27, 470	36, 120	81.5	80, 500	79.1
H.P. Air Comp.	298	3, 991	7, 150	14.2	16, 700	16.7
Hydraulic Plant	346	4, 300	6, 400	13.6	16, 800	19.8
Each of 2 stabilizers + Stern Planes	360	Long. 36, 495 Vert. 68, 100	Rigid		Rigid	
		125,000			1.820×10°	10a

* Damping is located between mass and foundation except for fairwater and stern planes which are to ground. Fairwater and stern plane damping constant is proportional to ship speed. This proportionality is represented by n, the frequency of oscillation, cps, for the case of a 5-bladed propeller.

APPENDIX H

PROCEDURES USED IN DEFINING THE MASS-ELASTIC CHARACTERISTICS OF THE PROPULSION SYSTEM

1. In Longitudinal Vibration

Although the propulsion system is broken by a dental coupling, the longitudinal forces that can be carried by the coupling without causing slippage are generally larger than the longitudinal vibratory forces. The coupling therefore does not isolate the propulsion system from the propeller and shafting in longitudinal vibration. The same reasoning applies to the dental couplings in the reduction gear and the turbines. To check this, consider first the Zurn coupling located forward of the emergency propulsion motor. At 155 rpm this coupling transmits 241,000 lb ft of torque. The pitch circle of the coupling teeth is 23.50" diameter so that the total force on the teeth is 246,000 pounds. This load is carried by 94 teeth each 2–7/8" wide and therefore corresponds to a load of 910 pounds per inch on each tooth. For this type of load with turbine oil lubrication, a minimum coefficient of friction of 0.10 is reasonable. Thus the coupling could carry 25,000 pounds before slipping would occur. This is well in excess of the harmonic force across the coupling.

With the couplings considered as elastic and not isolating members the whole rotating system constitutes the vibrating system. This comprises the propeller; the thrust bearing, which is the connection to the hull; the propulsion motor, the Zurn coupling, the reduction gear, the turbines and all the connecting shafting. When the weight and longitudinal stiffness of these elements are studied they fall naturally into a number of discrete weights connected by spring elements that have low weights. The arrangement is shown in Figure 5.

The weights at the discrete points are generally formed by the summation of manufacturer's weights for the parts but in some cases, for example, the reduction bull gear, it is necessary to compute the weights of components to form another grouping. The weight

of the propeller is increased by a water inertia for axial motion with no rotation as given by Lewis and Auslaender. ³¹ The propeller is also assumed to be a source of concentrated damping whose value is computed by the methods of Reference 31.

Proceeding from the propeller, half of the weight of the shafting between the propeller and the thrust bearing is assigned to the propeller and half to the thrust bearing mass. Also included with the thrust shaft mass is the weight of the rotor of the emergency propulsion motor which is closely connected to it. Because of the longitudinal flexibility of the web of the low speed reduction gear (the bull gear) the next natural weight division includes the bull gear shaft and hub and to this is added the Zurn disconnect coupling. The next weight item consists of the bull gear rim, the four pinions geared to it and the couplings and shafting associated with the pinions. The succeeding weight group includes the high speed gear hubs and shafts together with their couplings and shafting. The rims of the high speed gears with their mating pinions and couplings form the next weight grouping and the turbine rotors the final grouping. The weight breakdown of these items is given in Table H1.

The axial stiffnesses of the connections between the weights are generally computed from the lengths and diameters of the shafting. Where the shaft is pressed into the propeller hub and into couplings, it is assumed that the equivalent elastic length of the junction is one-third of a shaft diameter. A typical shaft stiffness calculation covering the section between the propeller and the thrust bearing is given in Table H2. A very flexible element in the longitudinal vibration system is the web connecting the hub with the rim of the low speed gear. The web consists of three plates 1" thick that connect a hub that is about 31" diameter to a rim that has an inside diameter of about 113". The web plates are connected together by 6 tubes each 19" in diameter and on a 72" diameter base circle that have a 3/8" wall thickness. The webs are bored out with 18" diameter holes in many of these tubes. They also incorporate "sound stoppers" in the form of partially flattened circumferential tubes of about 4" O.D. and 1/2" wall. Obviously the accurate calculation of the stiffness of this web would be difficult. As a guide to choosing the stiffness, we compute the stiffness

TABLE H-1 - Weight Distribution in Propulsion System in Longitudinal Vibration

Station A:	
Propeller	23, 550
Entrained water	17, 730
1/2 Shafting between Propeller and Thrust Shaft	10, 400
Total	51, 680
Station B:	
1/2 Shafting between Propeller and Thrust Shaft	10, 400
Thrust Shaft	5, 230
Emergency Propulsion Motor and Shaft	16, 270
Total	31, 900
Station C:	
Zuen Coupling	3, 500
Second Reduction Gear Hub and Shaft	10, 157
Total	13,657
Station D:	
Second Reduction Gear Rim and Deadening Rings	11,010
Four pinions and Associated intermediate Shafting	4,096
Total	15, 106
Station E:	
First reduction gear hub, coupling and shaft	4, 000

TABLE H-1 (continued)

Station F:	
First reduction gear rim, web and deadening rings 4 at 828 pounds each	3, 312
High speed pinions, coupling and distance 2 at 592 pounds each	1, 184
Total	4, 4%
Station G:	
Turbine rotor, coupling and distance piece 2 at 3670 pounds each	7, 340

TABLE H-2 - Typical Calculation for the Axial Stiffness between the Propeller and the Thrust Bearing

Based on EB drawing 9871-00142 Bu Ships No. SSG(N) 598-203-1891801

Main Shafting Details

Section	Length	OD	ID	Area	2 /A
Prop. to Sleeve	6"+6-1/4"*	16.00	4. 5	185, 2	0.066
Sleeve Section	<i>7</i> 5"	16.00	4.5	185, 2	. 405 + . 396
Sleeve (bronze)	<i>7</i> 5"	17. 373	16.00	9.5	15.8
Between sleeves	177-1/8"	16,00	9.00	137.5	1. 289
Stuffing bx. sleeve sect.	61"	16, 065	9.00	138.1	. 441
Stuffing bx. sleeve (bz)	61"	17, 373	16.065	8. 9	13. 72 . 429
Shaft	91 13 "	16, 003	9.000	137.6	0,667
Enlargement	9-5/16"+5.7"*	17. 25	9.00	1 <i>7</i> 0.1	0.088
Coupling	16-1/2"	28	9	552	0.030
Thrust flange	3"	28		616	0.005
Thrust shaft	23"	15-3/4		194.8	0.118 3.088

^{* 1/3} of diameter for fit

The shaft and its sleeve are in parallel so
$$(\frac{1}{\alpha})_{comb} = \frac{1}{\alpha shaft} + \frac{1}{\alpha sleeve}$$

The longitudinal stiffness between the propeller and the thrust collar is

$$\frac{AE}{V} = \frac{30 \times 10^6}{3.088} \approx 9.7 \times 10^6 \text{ lb/in.}$$

This value has been taken as 10×10^6 in subsequent calculations.

⁺ I/A multiplied by two because of ratio of Elastic Moduli of Bronze and Steel

of a set of three webs loaded by a unit force on the rim and restrained at the center. The deflection would be that of a circular plate rigidly restrained at the inner and outer radii which is loaded at the center by a moment. The deflection of such a plate is given by Timoshenko as $\phi = \frac{M}{\alpha_3 Eh^3}$. Taking an inner radius of 15.5" and an outer radius of

56. 5" the ratio becomes 0. 275 and the corresponding value of $a_3 = 2.7$. Since the moment in each plate for a force F is $\frac{F}{3} \times \frac{118}{2}$, the deflection under load is $\frac{118}{2} \times \phi$ and the plate thickness 1", the deflection for a unit load is 14.3×10^{-6} inches. The corresponding stiffness = 0.07 × 10^{6} pounds per inch. Because of the stiffening effects of the pipes, etc., this stiffness was arbitrarily increased to 0.10×10^{6} pounds per inch. It is not anticipated that this stiffness will be of much influence on the hull vibration and so no great efforts were expended in trying to improve its accuracy.

A very important stiffness in the response of the hull to the propeller forces is that of the connection between the shaft and the hull – i.e., the thrust bearing. For this reason the stiffness of this element was studied in considerable detail. The calculation for this stiffness presented here is based upon summing the flexibilities of the several components. The plans that are used are the following:

- Kingsbury Machine Works, Inc., Philadelphia, Pennsylvania Kingsbury Dwg. No. 464275 - Bu Ships Dwg. No. F 3, 297, 494A 37" Kingsbury Thrust and Journal Bearing Assembly
- Kingsbury Dwg. No. 464276 Bu Ships Dwg. No. F 3, 304, 231A 37" (6x6) Kingsbury Thrust Bearing, Housing Details
- Kingsbury Dwg. No. 464277 Bu Ships Dwg. No. F 3, 304, 232A 37" Kingsbury Thrust Bearing, Bearing Shell, Oil Catcher, etc. Details
- Kingsbury Dwg. No. 464278, Bu Ships Dwg. No. F 3, 303, 179A 37" (6x6) Kingsbury Thrust Bearing, Shoe, Base Ring, Leveling Plates, etc., Details
 - 1. Deflection of thrust collar:

The bending deflection is negligible

The shear deflection is given by:

$$\delta_s = \frac{3}{4} \frac{P}{\pi h G} \quad \text{Log } \frac{\alpha}{r}$$

$$\alpha = 1/2$$
 loading diameter = $\frac{1}{2} \times 27 \frac{13}{16}$

$$r = 1/2$$
 root diameter = $1/2 \times 15-3/4$ "

$$\frac{a}{r} = 1.77$$

$$G = shear modulus = 11.8 \times 10^6$$

$$\delta_s = 0.001812 \times 10^{-6} \text{ in/lb}$$

2. Deflection of Spherical Surfaces under Shoes: 12" spherical radius against a flat surface 6 shoes

By the Hertz formula (Page 376 of Ref. 33)

$$\delta = 1.23 \sqrt[3]{\frac{p^2}{E^2 R_2}}$$
 $p = \frac{F}{6}$

$$\frac{\phi \delta}{\phi p} = 1.23 \sqrt[3]{\frac{1}{E^2 R_2}} \times \frac{2}{3} p^{-1/3}$$

$$= 0.82 \sqrt[3]{\frac{1}{E^2 R_2 p}}$$

assume F = 120,000 lb p = 20,000 R₂ = 12" E = 30 x
$$10^6$$

Then $\frac{\phi \delta}{\phi p}$ = 0.82 $\sqrt[3]{\frac{1}{(30)^2 \times 10^{12} \times 12 \times 20,000}}$
= 0.137 × 10^{-6} in/lb
 $\frac{\phi \delta}{\phi F}$ = 0.0228 × 10^{-6} in/lb

3. Deflection of upper and lower leveling plate

Consider this deflection to be the sum of the deflections of two cantilevers. The first 3.8" long. 4.5" wide and 3" deep and the second 1" long. 4.5" wide and $\frac{23"}{16}$ deep. Since there are six leveling plates which carry the load on two sides the force on each cantilever is F/12.

Therefore

$$\frac{\delta}{F}$$
 upper leveling plates = $\frac{1}{12} \frac{(3.8)^3}{3 \times 30 \times 10^6 \times \frac{4.5 \times 3}{12}}$

$$\times \frac{1^{-3}}{3 \times 30 \times 10^{6} \times 4.5 \times (\frac{23}{16})^{3}} = 0.00583 \times 10^{-6} \text{ in/lb}$$

The lower leveling plate would have the same deflection.

4. Deflection in the thrust bearing housing:

Consider as direct shear between the center of the shaft and the flanges. The

thickness of the housing is 1-3/4", the length of the housing carrying the shear is about 30 inches on each side and the length of the section across which the shear is transmitted is about 20 inches.

The deflection, $\delta_r = \frac{F \times 20}{1.75 \times 60 \times 11.8 \times 10^6} = 0.0161 \times 10^{-6}$ in/lb. Because of bending in the housing and the flanges this is probably small. Consider the housing deflection to be $0.03'' \times 10^{-6}$.

5. Deflection of the foundation:

The deflection of the thrust bearing foundation is computed through the use of the following plans:

EB Div. Dwg. 9841-057, Bu Ships Dwg. SSB(N) 598-112-1890616K - foundation - Propulsion Plant

EB Div. Dwg. 9832-020, Bu Ships Dwg. SSB(N) 598-101-1890537F Frames 83, 84, 85, 86, 87, 88, 89, 90, 91 and Tank Flat

EB Div. Dwg. 9833-006, Bu Ships Dwg. SSB(N) 598-114-189 0564C BHD and Framing 92, 93, 94

The thrust bearing sits on a double beam about 5 frames, i.e., 130" long. Each beam consists of upper and lower flanges about 20" wide and 3/4" thick separated by two webs each 1/2" thick. The spacing between the flanges is about 22". Therefore, the moment of inertia of each beam is

$$1 = 2 \times 15 \times 11^{2} \times \frac{1 \times (22)^{3}}{12} = 4520 \text{ in}^{4}$$

Assuming that these beams are pinned at the ends and are subjected to an end moment the rotation will be $\frac{ml}{3El}$. Since the center of the beam is about 36" below the \P of the shaft

the deflection at the shaft centerline for a unit load will be:

$$\frac{\delta}{P} = \frac{F \times 36 \times 130 \times 36}{3 \times 4520 \times 2 \times 30 \times 10^6} = 0.208 \times 10^{-6} \text{ in/lb}$$

The whole foundation structure is quite loosely tied except for the after end attachment to the tank flat. The deflection of this foundation structure in the longitudinal direction under a unit load can be obtained by computing the deflection of the tank top to which it is attached in shear and in bending and adding to the resulting stiffness, the additional stiffnesses of the longitudinal members.

The deflection of the tank top between frames 89 and 92 in shear is (since there are two parallel shear elements)

$$\frac{\delta}{P} = \frac{1}{2} \frac{\ell}{AG} = \frac{1/2 \times 50"}{3/8" \times 78" \times 11.8 \times 10^6} = 0.0725 \times 10^{-6} \text{ in/lb}$$

The deflection of the tank top between frames 89 and 92 in bending is determined as follows:

Because of shear lag the equivalent breadth of the tank closure on Frame 89 is obtained from Figure F-2.

$$L = 165^{\circ}$$
, $B = 54^{\circ}$ $\frac{LL}{B} = 3$. $\frac{x}{b} = 0.86$

The central moment of inertia determined as follows:

Section	Dim.	Area	C. G.	M_{fr}	I _{fr 92}
Bhkd. Fra. 92	1-1/8" × 120"	135	0	0	22/22
Tank Top web.	1/2 × 78"	39	39	1520	19, 800
Tank closure Fr. 89	1-1/8 × 54"	61	<i>7</i> 8"	4760	371,000
	•	235	26.8	<u> 6280</u>	390, 800
				•	169,000
				=	= 221,800

The beam is loaded as follows:

If a uniform beam

$$\delta = \frac{P}{2} \times \ell_2 \times \frac{\ell_1}{EI} \times \ell_2 + \frac{P}{2} \frac{\ell_2^3}{3EI}$$

$$= \frac{\frac{P}{2}}{30 \times 10^{6} \times 222,000} \quad \left[\frac{2}{50} \times 25 + \frac{50^{3}}{3}\right]$$

$$\frac{\delta}{P} = 0.0157 \times 10^{-6}$$

The flexibility of the tank of the longitudinal members are as follows:

For members 25" off
$$\mathcal{C}$$
 $\frac{\delta}{p'} = \frac{60}{60 \times \frac{1}{2} \times 11.8 \times 10^6}$
$$= 0.17 \times 10^{-6}$$

For members 19" off
$$\sqrt{2} = \frac{60}{40 \times \frac{1}{2} \times 11.8 \times 10^6}$$

$$= 0.25 \times 10^{-6}$$

Since the tank top, the two longitudinal members 25" off the © of the ship and the two longitudinal members 19" off the © of the ship are in parallel, the overall flexibility of the foundation connection to the ship is the reciprocal of the sum of the reciprocals of the parts.

$$\frac{1}{\text{oltotal}} = \frac{1}{0.0882 \times 10^{-6}} + \frac{2}{0.17 \times 10^{-6}} + \frac{2}{0.25 \times 10^{-6}}$$
$$= 11.22 \times 10^{6} \times 11.8 \times 10^{6} \times 8 \times 10^{-6}$$

$$\alpha_{\text{ToT}} = 0.0323 \times 10^{-6} \text{ in/lb}$$

When all of the flexibilities are added the total flexibility of the connection between the thrust shaft and the hull is obtained.

Element		Flexibility in/lb
Thrust Collar		0.0018×10^{-6}
Spherical Surfaces under shoes		0.0228×10^{-6}
Upper loading plates		0.0058×10^{-6}
Lower leveling plates		0.0055×10^{-6}
Thrust bearing housing		0.0300×10^{-6}
Rotation of found, beams		0, 2080 × 10 ⁻⁶
Axial defl. of foundation		0.0323×10^{-6}
	Total	0.3065×10^{-6}

The corresponding stiffness between the thrust shaft and the hull is 3.28×10^6 , say 3.3×10^6 lb/in.

2. In Vertical Vibration

A sketch of the parts of propulsion system that participate in the vertical vibration as a separate system sprung from the hull is shown in Figure H1. It will be noted that this

Figure H1- The Propulsion System in Vertical Vibration

system consists of the propeller and shafting up to the thrust bearing and that the thrust bearing and the elements of the propulsion system forward of the thrust bearing are considered to be rigidly connected to the hull.

The weights at the several stations on the shaft are those of the propulsion shafting between half way to the station forward and half way to the one aft. The $\Delta x/EI$ is formed in the same manner. The propeller weight consists of 23,550 pounds for the propeller plus 4350 pounds for the entrained water. Lewis and Auslaender³¹ are indefinite as to the proper value to use for entrained mass in the transverse direction. The value that is shown is obtained by multiplying the value for entrained mass in the longitudinal direction with the propeller restrained from rotation, an entrained mass of 17,730 pounds, by the square of the ratio of the transverse projection of one blade at 0.7R to the axial projection. This ratio = pitch/0.7 π D and has the value 0.495. Thus the assumed value of entrained mass in the transverse direction is 4350 pounds and even this value is probably high.

The moment of inertia of the entrained water about the transverse axis is formed by applying Lewis and Auslaender's 31 suggestion of multiplying the value for longitudinal water inertia by $D^2/16$ and is found to be 40.9×10^6 pounds inches squared. The moment of inertia of the propeller itself about the transverse axis is taken a half of the polar moment of inertia and is therefore 18.09×10^6 pounds inches squared. The sum of these is taken as 59×10^6 pounds inches squared. The computer program does not treat the moment of inertia as concentrated with the mass but rather spread out between the concentrated masses. In accordance with this the 59×10^6 value is considered to be distributed between the stem tube bearing and the propeller. A more precise representation of this inertia would be obtained by treating the propeller as two masses a short distance apart with the rotary inertia distributed between them.

The damping on the propeller in the transverse direction was obtained from Lewis and Auslaender³¹ value for torsional vibration damping by the following procedures. b_{θ} by Lewis and Auslaender's procedures was found to be 45, 300 ft lb sec. It is assumed that the damping torque (=45, 300 ω e) acts at 0.7 radius (0.7 x $\frac{16}{2}$ = 5.6 ft). Thus the damping

force at 0.7 radius = $\frac{45,300}{5.6}$ can be related to the linear harmonic velocity at 0.7R, $U_{0.7}$ (= 5.6 w9) to give the net damping force at 0.7 radius = $\frac{45,300}{(5.6)^2}$ $U_{0.7R}$ = 1440 Uib ft. sec.

The force corresponding to a transverse harmonic velocity rather than a radial harmonic velocity is assumed to be half of the later, or 720 U. When this value is changed to inch units and multiplied by an H factor of 0.60 the assumed value of vertical damping coefficient = 40 lb.in/sec is obtained.

It remains now to determine the stiffness of the coupling between the shafting system and the hull. For the journal bearing that is incorporated in the thrust bearing housing and for all the bearings forward of this since they are oil lubricated bearings and are mounted on solid structure, the weights are assumed to be integral with the hull. The elasticities of the connections occur in the stuffing box and stern tube bearings and in bending of the shafting. The flexibilities of the bearings arise from local deformation of the hull structure, deformations of the bearing support structure and deformation in the bearing staves. When these are evaluated it is found that the local deformation of the hull is negligible, the deformation of the bearing support structure, although designed to allow some accommodation of the bearing, is small but that the deformation in the bearing staves is significant. The stuffing box is assumed to give no support to the shaft.

The flexibility of the rubber staves in the stern tube bearing is determined as follows:

The shaft diameter in the bearing is 17-3/8"

The length of the stern bearing is 60"

The static load on the stern tube bearing, taken as the propeller weight

+ 2/3 of the shaft weight, = 37,400 lbs

The projected area of the bearing = 1042 in^2

The load per unit of projected area = 35.9 lb/in²

From Figure H2 the slope of the deflection curve for a No. 10 stave on a 14-5/8" diameter shaft at a load of 35.9 lb/in² is 0.001623 in/lb/in². Thus the overall flexibility

of the bearing is $0.001623 \div 1042 = 1.558 \times 10^{-6}$ in/lb. When the flexibility of the bearing support tubes, and the shaft tubes are computed they are found to be 0.30×10^{-6} in/lb and the corresponding stiffness of the stern tube bearing connection between shafting and hull is 0.538×10^{6} lb/in.

For the forward, stuffing box, bearing the projected area is 521 sq. in. and the load is assumed to be 7000 lb giving a pressure per square inch of projected area of 13.5 lb/in².

From Figure H2 the slope of the deflection curve for a No. 10 stave with a 14-5/8" diameter shaft and a load of 13.5 lb/in² is 0.00225 in/lb/in². Thus the overall bearing flexibility is 0.00225/521 = 4.31×10^{-6} in/lb.

From detailed calculations the flexibility of the forward tube and the bulkhead support is 0.01×10^{-6} in/lb. Thus the overall flexibility of the forward bearing is 4.32×10^{-6} in/lb. and the corresponding stiffness of the connection between the shafting system and the hull at this point is 0.232×10^{-6} lb/in.

APPENDIX I

GENERALIZED BENDING RESPONSE CODE (GBRC 1)

The generalized bending response code (GBRC 1) can be used to calculate the response of beam-spring systems to specified simple harmonic driving forces and/or moments. For example, a ship hull connected elastically to other elastic systems, say a propulsion system, as well as to sprung masses, can be treated. The program is a FORTRAN II program which has been run on the IBM 7090. It is now in regular use at David Taylor Model Basin, and is referred to by number 1-840-277-01.

In this appendix, the difference equations used in GBRC 1 to represent a non-uniform beam (hull, shafting, etc.) in bending are derived. Then, these equations are modified to include more general systems such as systems of beams connected by springs. By permitting complex scaling factors for various input parameters, a variety of damping options are included, for example, Rayleigh damping and hysteresis damping. Damping coefficients for connections between sections can be given explicitly.

Longitudinal or torsional vibration problems can be solved using the program. For example, if each beam is made up of sections with spring connections only, the equations reduce to those for a mass-spring system. These equations are those used to approximate beam systems connected by springs in longitudinal or torsional vibration problems.

The program contains a special option which permits the effective mass for each section to be calculated as a function of frequency.

A detailed description of the input preparation required for GBRC 1 is included here. In Appendix J actual input sheets for the particular vertical bending calculations included in this report are given.

The output generated by GBRC 1 includes a tabulation of the input used to describe the problem, an optional summary output which lists amplitudes for deflections and moments versus frequency for a selected set of sections, and finally for each selected frequency, the

real and imaginary parts of the deflection and moments as well as their amplitude and phase angle for each section.

Method of Analysis

The system of differential equations to be satisfied by the hull, shafting system, etc. in bending is given by

(3. 1)
$$\frac{\partial V(x,t)}{\partial x} = -\mu(x) \frac{\partial^2 y(x,t)}{\partial t^2} - c(x) \frac{\partial y}{\partial t} + P(x,t)$$

(3. 2)
$$\frac{\partial M(x,t)}{\partial x} = V(x,t) + I_{\mu z}(x) \frac{\partial^2 \gamma(x,t)}{\partial t^2} + Q(x,t)$$

(3. 3)
$$\frac{\partial y(x,t)}{\partial x} = y(x,t) - \frac{V(x,t)}{KAG(x)}$$

(3.4)
$$\frac{\partial \gamma(x,t)}{\partial x} = \frac{M(x,t)}{EI(x)}$$

with the following notation:

x: distance in the longitudinal direction measured from the origin of coordinates

t: time variable

y: displacement normal to x in the plane of bending

y: angular displacement relative to the z-axis

V: shearing force in the direction of flexural vibration (y-direction)

M: bending moment

μ: effective mass per unit length

I__: effective rotary inertia per unit length

KAG: shear rigidity

El: bending rididity

P: external forcing function, force in y-direction

c: damping coefficient

Q: external forcing moment

If the forcing functions are assumed to be a simple harmonic function of time so that

$$P(x, t) = e^{i\omega t}P(x)$$

$$Q(x, t) = e^{i\omega t}Q(x)$$

Then, also,

$$y(x, t) = e^{i\omega t}y(x)$$

$$\gamma(x, t) = e^{i\omega t}\gamma(x)$$

$$V(x, t) = e^{i\omega t}V(x)$$

$$M(x, t) = e^{i\omega t}M(x)$$

and equations (1) to (4) become

(3.5)
$$\frac{dV(x)}{dx} = \mu(x) \omega^2 y(x) - ic(x)\omega y(x) + P(x)$$

(3.6)
$$\frac{dM(x)}{dx} = V(x) - I_{\mu z}(x) \omega^2 \gamma(x) + Q(x)$$

$$\frac{dy(x)}{dx} = \gamma(x) - \frac{V(x)}{KAG(x)}$$

$$\frac{d\gamma(x)}{dx} = M(x)/EI(x)$$

Solving (3.6) and (3.7) for V(x) and y(x) we obtain

$$\frac{1}{KAG(x)} \quad \frac{dM(x)}{dx} + \frac{dy(x)}{dx} = \left(1 - \frac{1}{\mu z} \frac{(x) \omega^2}{KAG(x)}\right) y(x) + \frac{Q(x)}{KAG(x)}$$

٥r

$$(3.9) \qquad \gamma(x) = \left(\frac{1 - 1 \cdot x^2(x) \cdot \omega^2}{KAG(x)}\right)^{-1} \left(\frac{1}{KAG(x)} \cdot \frac{dM(x)}{dx} - Q(x) + \frac{dy(x)}{dx}\right)$$

and

$$\frac{dM(x)}{dx} + I_{\mu z}(x) \omega^{2} \frac{dy(x)}{dx} = V(x) \left(1 - \frac{I_{\mu z}(x) \omega^{2}}{KAG(x)}\right)$$

or

$$(3.10) \qquad V(x) = \left(1 - \frac{I_{\mu z}(x)\omega^2}{KAG(x)}\right)^{-1} \left(\frac{dM(x)}{dx} + I_{\mu z}(x)\omega^2\frac{dy}{dx}\right)$$

We now subdivide the interval from x = 0 to x = L by the abscissas

$$x_{1/2} = 0 < x_{3/2} < x_{5/2} < \dots < x_{N+1/2} = L$$

as shown below.

Then if (3.5) is ingegrated from $x_{n-1/2}$ to $x_{n+1/2}$, for n=1, 2, 3, ..., N, we have

$$V_{n+1/2} - V_{n-1/2} = \int_{x_{n-1/2}}^{x_{n+1/2}} (\mu(x) \omega^2 - ic(x)\omega) y dx + \int_{x_{n-1/2}}^{x_{n+1/2}} P(x) dx$$

which is approximated by

(3.11)
$$V_{n+1/2} - V_{n-1/2} = \left[(\mu \triangle x)_n \omega^2 - i(c \triangle x)_n \omega \right] y_n + (P \triangle x)_n$$

$$(\mu \triangle x)_n = \int_{x_{n-1/2}}^{x_{n+1/2}} \mu(x) dx$$

$$(c \triangle x)_{n} = \int_{x_{n-1/2}}^{x_{n+1/2}} c(x) dx$$

$$(P \triangle x)_{n} = \int_{x_{n-1/2}}^{x_{n+1/2}} P(x) dx$$

Now, from (3.10) we can approximate $V_{n+1/2}$ for n = 1, ..., N-1 by

(3. 12)
$$V_{n+1/2} = \frac{1}{(\triangle x)_{n, n+1}} \left(1 - \left(\frac{I_{\mu z}}{KAG} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_{n+1} - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_n - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_n - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_n - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_n - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_n - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_n - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_n - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_n - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_n - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_n - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1} \omega^2 \right)^{-1} \left(M_n - M_n - Q_{n, n+1} + \left(I_{\mu z} \right)_{n, n+1}$$

$$Q_{n, n+1} = \int_{x_n}^{x_{n+1}} Q(x) dx$$

$$(I_{\mu z} \stackrel{\triangle}{x})_{n, n+1} = \int_{x_n}^{x_{n+1}} I_{\mu z} (x) dx$$

$$\left(\frac{\triangle x}{KAG}\right)_{n, n+1} = \int_{x_n}^{x_{n+1}} \frac{dx}{KAG(x)}$$

and
$$x_n = 1/2 (x_{n+1/2} + x_{n-1/2})$$
.

The end conditions to be imposed determine $V_{1/2}$ and $V_{n+1/2}$. In particular,

(3.13) for
$$V(O) = 0$$
 use $V_{1/2} = 0$
for $V(L) = 0$ use $V_{N+1/2} = 0$

Substituting (3.12) into (3.11) and taking (3.13) into account gives for $n = 1, 2, \ldots, N$:

$$(3.14) \propto n, n+1 (M_{n+1} - M_n) + \beta_{n, n+1} (y_{n+1} - y_n)$$

$$-\alpha_{n-1,n}(M_n - M_{n-1}) - \beta_{n-1,n}(y_n - y_{n-1}) = \delta_n y_n + P_n + \alpha_{n,n+1} Q_{n,n+1}$$
$$-\alpha_{n-1,n} Q_{n-1,n}$$

$$\alpha'_{n, n+1} = \begin{cases} \left[1 - \left(\frac{1}{\mu z} \frac{\omega^2}{KAG}\right)_{n, n+1}\right]^{-1} \frac{1}{(\Delta x)_{n, n+1}} & \text{for } n = 1, 2, 3, ..., N-1 \\ 0 & \text{otherwise} \end{cases}$$

$$\beta_{n, n+1} = \begin{cases} (I_{\mu z})_{n, n+1}^{\omega^2} \alpha_{n, n+1}^{\omega} & \text{for } n = 1, 2, 3, ..., N-1 \\ 0 & \text{otherwise} \end{cases}$$

$$\delta_n = (\mu \triangle x)_n \omega^2 - i(c \triangle x)_n \omega$$
 for $n = 1, 2, ..., N$

Now (3.8) can be integrated to give for n = 1, 2, ..., N

$$\gamma_{n+1/2} - \gamma_{n-1/2} = \int_{x_{n-1/2}}^{x_{n+1/2}} \frac{M(x)}{EI(x)} dx$$

which can be approximated by

(3.15)
$$\gamma_{n+1/2} - \gamma_{n-1/2} = \begin{pmatrix} \Delta x \\ EI \end{pmatrix}_n M_n$$

where

$$\left(\frac{\Delta x}{\overline{E}I}\right)_{n} = \int_{x_{n-1}/2}^{x_{n+1}/2} \frac{dx}{\overline{E}I}$$

From (3. 9), $\gamma_{n+1/2}$ can be approximated for n = 1, 2, ..., N-1

$$(3.16) \quad \gamma_{n+1/2} = \left[1 - \left(\frac{I_{\mu z}}{KAG}\right)_{n, \, n+1} \omega^{2}\right]^{-1} \left[\frac{M_{n+1} - M_{n}}{(KAG \, \Delta x \,)_{n, \, n+1}} + \frac{\gamma_{n+1} - \gamma_{n}}{(\Delta x)_{n, \, n+1}}\right]$$

while $\gamma_{1/2}$ and $\gamma_{N+1/2}$ are determined by end conditions.

In particular since M(O) = 0, and V(O) = 0, we will use the end condition:

$$M_1 = 0$$

Similarly for the other end we will use

$$M_n = 0$$

Substituting (3.16) into (3.15) taking account of end conditions, we obtain for n = 2, 3, ..., N-1

(3.17)
$$\epsilon_{n, n+1} (M_{n+1} - M_n) - \alpha_{n, n+1} (y_{n+1} - y_n)$$

$$-\epsilon_{n-1, n} (M_n - M_{n-1}) - \alpha_{n-1, n} (y_n - y_{n-1}) = \zeta_n M_n$$

$$\varepsilon_{n, n+1} = \frac{1}{(KAG)} \alpha_{n, n+1} \alpha_{n, n+1}$$
 for $n = 1, 2, ..., N-1$

$$\zeta_n = \left(\frac{\Delta x}{E I}\right)_n$$
 for $n = 2, 3, ..., N-2$

For convenience (3, 14) and (3, 17) can be rewritten as follows:

$$(3.18) - \beta_{n-1}, n y_{n-1} - \alpha_{n-1}, n M_{n-1} + (\beta_{n,n+1} + \delta_n + \beta_{n-1,n}) y_n$$

$$+ (\alpha_{n, n+1} + \alpha_{n-1, n}) M_{n} - \beta_{n, n+1} y_{n+1} - \alpha_{n, n+1} M_{n+1} = -P_{n} + \alpha_{n, n+1} Q_{n, n+1}$$

$$- \alpha_{n-1, n} Q_{n-1, n}$$

$$(3.19)$$
 - $\alpha_{n-1, n} y_{n-1}$ - $\epsilon_{n-1, n} M_{n-1} + (\alpha_{n, n-1} + \alpha_{n-1, n}) y_n$

+
$$(\varepsilon_{n, n+1} + \varepsilon_{n-1, n} + \zeta_n) M_n - \alpha_{n, n+1} \gamma_{n+1} - \varepsilon_{n, n+1} M_{n+1} = 0$$

For n = 1 and n = N, the equations will incorporate the end conditions specified. In summary, equations (3.18) and (3.19) for n = 1, 2, ..., N-1 can be rewritten in matrix notation

$$(3.20) \qquad \overrightarrow{AZ} = \overrightarrow{P}$$

where

$$(3.24) \quad \overrightarrow{z}_{n} = \begin{vmatrix} y_{n} \\ M_{n} \end{vmatrix} \qquad \overrightarrow{P}_{n} = \begin{vmatrix} \overrightarrow{P}_{n} \\ 0 \end{vmatrix}$$

with
$$\widetilde{P}_n = P_n - \alpha_{n-1,n} Q_{n-1,n} + \alpha_{n,n+1} Q_{n,n+1}$$

and for n = 2, 3, ..., N-1

$$A_{n, n} = \begin{cases} \delta_{n} + \beta_{n-1, n} + \beta_{n, n+1} & \alpha_{n, n+1} + \alpha_{n-1, n} \\ \alpha_{n, n+1} + \alpha_{n-1, n} & \beta_{n} + \beta_{n-1, n} + \beta_{n-1, n} \end{cases}$$

$$A_{n, n+1} = \begin{bmatrix} -\beta_{n, n+1} & -\alpha_{n, n+1} \\ -\alpha_{n, n+1} & -\epsilon_{n, n+1} \end{bmatrix}$$

$$A_{n, n-1} = \begin{bmatrix} -\beta_{n-1, n} & -\alpha_{n-1, n} \\ -\alpha_{n-1, n} & -\epsilon_{n-1, n} \end{bmatrix} = A_{n-1, n}$$

and finally

$$A_{1,1} = \begin{bmatrix} \delta_1 + \beta_{1,2} & \alpha_{1,2} \\ \alpha_{1,2} & \gamma_1 + \epsilon_{1,2} \end{bmatrix}$$

$$A_{NN} = \begin{pmatrix} \delta_N + \beta_{N-1}, N & \alpha'_{N-1}, N \\ \alpha'_{N-1}, N & \gamma_N + \varepsilon_{N-1}, N \end{pmatrix}$$

where ζ , and ζ_n are chosen large enough so that M_1 and M_N will vanish for practical purposes.

The above formulation can be generalized to apply to systems of beams with special connections. In this case each beam can be subdivided and the sections numbered as for example in Figure 1-1. Then a system of matrix equations of the form

$$(3. 23) \qquad \qquad \overrightarrow{A} = \overrightarrow{P}$$

can set up where in general

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & --- & A_{1N} \\ A_{21} & \dot{A}_{22} & A_{23} & --- & A_{2N} \\ \\ A_{N1} & A_{N2} & A_{N3} & --- & A_{NN} \end{bmatrix}$$

Here the $A_{n, m}$ are 2x2 submatrices of A and \overline{z} and \overline{P} are defined as in (3.22). In general, $A_{n, m}$ will contain non-zero elements whenever the section numbered n is connected to the section numbered m. In particular, if n and m are adjacent beam sections,

$$A_{n, m} = \begin{vmatrix} -\beta_{n, m} & -\alpha_{n, m} \\ -\alpha_{n, m} & -\epsilon_{n, m} \end{vmatrix}$$

If sections n and m are connected by a spring

$$A_{n, m} = \begin{bmatrix} +k_{n, m} + i\omega c_{n, m} & 0 \\ 0 & 0 \end{bmatrix}$$

where $k_{n,m}$ is the spring constant for the connection and $c_{n,m}$ is the damping coefficient for the connection. In general

$$A_{n, n} = -\sum_{\substack{m=1\\m \neq n}} A_{n, m} + D_n$$

where

$$D_{n} = \begin{vmatrix} \delta_{n} & 0 \\ 0 & \zeta_{n} \end{vmatrix}$$

In addition, if section n is connected to ground, $A_{n,n}$ must be augmented by

$$\begin{bmatrix} -k_n - ic_n \omega & 0 \\ 0 & 0 \end{bmatrix}$$

where k_n is the spring constant for the ground connection and c_n is the damping coefficient.

Figure 1-1 - Typical Connected Beam Elements

When the above formulation is applied to the set of beams with special connections illustrated in Figure 1:,1 and a unit force is applied at Station 6, equation (25) takes the form

$$A = \begin{bmatrix} A_{11} & A_{12} & 0 & 0 & 0 & 0 & 0 & 0 \\ A_{21} & A_{22} & A_{23} & 0 & 0 & A_{26} & 0 & 0 \\ 0 & A_{32} & A_{33} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & A_{44} & A_{45} & 0 & 0 & 0 \\ 0 & 0 & 0 & A_{54} & A_{55} & A_{56} & 0 & A_{58} \\ 0 & A_{62} & 0 & 0 & A_{65} & A_{66} & A_{67} & 0 \\ 0 & 0 & 0 & 0 & 0 & A_{76} & A_{77} & 0 \\ 0 & 0 & 0 & 0 & 0 & A_{85} & 0 & A_{88} \end{bmatrix}$$

and

The Effective Mass

The effective mass $(\mu \triangle x)_n$ for section n, as it is introduced in equation (3, 11) and later used in the definition of δ_n in equation (3, 14), is made up of two parts. The first is the mass of the ship section. The second is a frequency dependent virtual mass which takes into account the inertial effect of the surrounding water. The method used to calculate the virtual mass is that discussed in Appendix C of this report which is based on that considered by E. K. Kennard (26).

This code provides for the automatic calculation of the virtual mass coefficient J as a function of frequency for each section n of a system and then the effective mass for section n is calculated using

$$(\mu \triangle x)_n = m_n + J(\omega) \overline{m}_n$$

where

 m_n is the specified mass of section n

 $\overline{\boldsymbol{m}}_{n}$ is the specified water inertia associated with section \boldsymbol{n}

$J(\omega)$ is the virtual mass coefficient

For each system, the displacement of each section is calculated for a set of frequencies. Until the frequency is such that the real part of the displacement for a section has at least two zeros, an initial specified value of J will be used for that system. As soon as the displacement has at least two zeros, then let x_a represent the position of the first of them, and x_b the position of the last. An average distance between the zeros of the real part of the displacement can be calculated using

$$d = \frac{x_b - x_a}{n - 1}$$

where n is the number of zeros. Then

$$J = \frac{k_1(\alpha)}{k_1(\alpha) - \alpha k_0(\alpha)}$$

where

$$\alpha = \frac{\pi c}{d}$$

c is the system radius, and k_1 are the first and second modified Bessel functions of the second kind. J is approximated for $.6 < \alpha < 4$ by

$$.0609 + \frac{.715}{\alpha} - \frac{.19093}{\alpha^2} + \frac{.00297}{\alpha^3}$$

and for $0 < \alpha < .6$ by

$$1.030 - 1.56 \frac{d}{c}$$

Input Preparation

The input data required for the GBRC-1 program is that required for setting up the system of difference equations described earlier. . . . In particular, the following kinds of data can be included for each case:

- 1) The total number of beam sections. This must be less than 80.
- 2) The range of frequency values and the frequency interval for which response curves are required.
- 3) The system to which each beam section belongs, i.e., whether to the hull, shaft, or some other system.
- 4) For the hull and/or any other system, for which the J-factor is required for the added or virtual mass calculation, the following data is required:
 - a) An initial value for the J-factor
 - b) The radius
 - c) A water inertia term for each section
 - 5) The mass of each section
- 6) The integral over each section of the reciprocal of the bending rigidity, i.e., $(\Delta x/EI)_{D}$.
- 7) The integral from the mid-point of each section to the mid-point of the next of the reciprocal of the shear rigidity, i.e., $(\Delta x/KAG)_{n, n+1}$ or $(\Delta x/KAG)_{n, m}$.
- 8) The integral of the mass polar moment of inertia from the mid-point of each section to the mid-point of the next, i.e., $(l_{uz} \triangle x)_{n, n+1}$ or $(l_{uz} \triangle x)_{n, m}$.
- 9) The spring constant and damping coefficient associated with each spring connection.
- 10) For each set of parameters, for each system a complex scaling factor can be supplied. This allows damping to be introduced in various ways. In particular, a complex

scaling factor for the ship mass corresponds to the introduction of a Reyleigh damping coefficient.

For each section and connection a system number between 1 and 80 inclusive must be specified. This number is used to select the scaling factors to be applied to the parameters for that section or connection. It is also used in order that the program can select the set of sections and connections which make up a given system so that the zeros of the displacement of that system can be determined for the calculation of the virtual mass coefficient J. Section numbers for sections which are connected to each other should differ by less than 15.

The contents of these cards are described in detail below. In general, when a series of problems is being run, only those data cards which contain changes from the previous case are required. The numbers punched in columns 3 and 4 of each card identify the kind of information that card contains. An input deck should begin with a title card, and the set of data for each problem should begin with a data control card (columns 3 and 4 contain 90) which gives, for each type of data card included, the number of such cards. The data cards for the problem should follow in the same sequence as they are given on the data control card. The last card of the input deck for a set of problems should contain 99 in columns 3 and 4 if no additional problems are to be run, and 98 in columns 3 and 4 if a complete data set for another unrelated problem follows.

Detailed formats for each type of card are given below.

1) Run Title Card

Columns	Contents
7 to 12	(62 H△△
13 to 72	These contain whatever title is to be
	associated with this run.

I-20

5

Figure 1-2 - Data Input Card (1)

						DRC	PROGRAMMER		DATE	
1808q	PROBLEM NO.					hd	1 1	LABEL	SHEET.	OF
SEC	SECTION	PARAN	PARAMETER	ALUES - U	UNSCALED	33	=	49	59 25	75
	SECTION	CONDA	FND SYSTEM	MASS	WATER	(0%E1)n	(AX), n+1	(0x/xA6).n+1	(Iµ z dx)n,n+1	σ_{c}
0043										
0043										
0043										
0043										
0043			-							
0043		i								
0043										
00										
8									- +	
0043										
21										
8										
0043	m									
843	100									
00	100									
0043	-									
5400										
8063	-									
8	-		-							
849	-									
8063	3									
8	~									
0043	×									
0043	2	_	_							

Et 1-3 - Data larget Cord (2)

TITLE					DBG	DROGDAMMED		DATE		
PROBLEM NO.					E	1	LABEL TTTT	SHEET	T 0F	
SECTION DATA CARDS	DATA	CARDS	5 7-	55	33	4	49	57	65	k
SECTION ON	END CONDN.	END SYSTEM	MASS	WATER	(4x/e1)n	1+u'u(x4)	(AX/kA6), n. +1	(IMZ DX), n+1	ď	
REAL PART OF SCALING FACTORS	OF SCA	LING F	ACTORS							
00410000										
00410000										
00410000										
IMAGINARY F	PART OF	F SCALING	NG FACTORS							
00420000										
00420000										
00420000										
PARAMETER	WALDES	- UNSCALED	ALED							
L										
22										-
0043										
0043										
0043										
0043										
0043										1
0043										\prod
0043										
0043										
0043										
0043										
0043										
0043										
0043										

€
Card
Input
Data
•
1-5
gure
iii l

PROBLEM NO. 5 9 18 17 SPECIAL CONNECTION CARDS N M SYSTEM Kn,m REAL PART OF SCALING FACTORS DOS! DOS! IMAGINARY PART OF SCALING FACTORS DOSS DOSS	25 Kn,m Cn,m	35 Cn.m/k	PROGRAMMER PHASE AI AXn, m	40 40 (4x/kAG) _{0,m}	DATE DATE SHEET. 40	8	
CIAL CONNECTION PART OF SCALING	KA, m			40 (4x/kA6) _{n,m}			
CIAL CONNECTION DART OF SCALING	κ, π 35	$ \ \ \ + + $	ΔXn, m	(4×/kA6)n,m	(IµI dx)n,m		
OF SCALING OF SCALING OF SCALING	Κ _{Λ,} π 35		ΔX _{n, m}	(4x/kA6)n,m	(Iµ1 dx)n,m		
PART OF SCALING	Κη, π		ΔX _{n, m}	(4×/kA6)n,m	(Iµ1 dx)n,m		
PART OF SCALING							
SINARY PART OF							1
SINARY PART OF							
SINARY PART OF							7
SINAKY PAKI OF							-
250	2 PACIONS						T
						•	
							1
PARAMETER VALUES - UNSCALED	ED		-4				T
							T
0053							T
0053							Τ
0053							7
0053							Τ
0053							Т
6005							;
0063							1
35							1
0053							1

SPECIAL CONNECTIONS - PARAMETER VALUES SPECIAL CONNECTIONS - PARAMETER VALUES SPECIAL CONNECTIONS - PARAMETER VALUES SPECIAL CONNECTIONS - SPARAMETER VALUES SOCIAL CONNECTIONS - SPARAMETER VALUES SOCIA												
SPECIAL CONNECTIONS - PARAMETER VALUES 35 41 49 57 s g list Long Confus Confus Confus Confus Confus Confus SFTEM Confus	A COR	EM NO.					F 4	MMER	1981 - III	DATE	ET OF	1 1
g 68 I/T 25 35 41 I/O 57 0023 N <	SPEC	11	NECT		H -	ALUES						
OD 35 C Λ·m C Λ·m /ω C Λ·m /ω (ΔΧ/ΚΛΘ) μ, m OD35 C C ·m C C ·m /ω (ΔΧ/ΚΛΘ) μ, m (ΔΧ/ΚΛΘ) μ, m OD35 C C ·m C C ·m /ω (ΔΧ/ΚΛΘ) μ, m (ΔΧ/ΚΛΘ) μ, m OD35 C C ·m C C ·m C C ·m /ω (ΔX/ΚΛΘ) μ, m C C ·m /ω OD35 C C ·m C C ·m / ω C C ·m /ω C C ·m /ω C C ·m /ω C C ·m /ω OD35 C C C ·m / ω C C ·m ·m / ω C C ·m					<i>u</i>	25	33	41				K
		u	٤	SYSTEM		Cn,m	Cnm/W	(4X)n,m	(4××46), m	(I42 0x)n,m		
0053 0053 0053 0053 0053 0053 0053 0053	0053											
0003 0003 0003 0003 0003 0003 0003 000	0053											
0003 0003	0053											
0003 0003 0003 0003 0003 0003 0003 000	0053											
0003 0003 0003 0003 0003 0003 0003 000	0023											
0003 0003 0003 0003 0003 0003 0003 000	00053											
	00033					•						
	6500											
	0053											
	- 0033											
0003 0003 0003 0003 0003 0003 0003 000	6500 24											·7
0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0004 0003 0005	0003											
0003 (000) 0003 (000) 0003 (000) 0003 (000) 0004 (000) 0005 (000)	0053											
0003 0003 0003 0003 0003 0003 0003 000	000											\neg
0003 0003 0003 0003 0003 0003 0003 000	0033											
0009 0009 0009 0009 0009 0009 0009 0009 0009 0009 0009 0009 0009 0009 0009 0009 0009 0009 0009 0009 0009 0009 0009 0009	0003											
0005 0005 0005 0005 0005 0005 0005	600											7
0003 0003 0003 0003 0003	6000											
2003 2003 2003 2003 2003	6300											7
0.055 0.059 0.053	800											
QQ53	0053											1
0003	003											T
0003	0053											
	0003											

2) Data Control Card

	Columns	Contents
	3 to 4	90 (Type of data)
	5 to 6 7 to 8	Columns 5, 6 contain number of data cards of type given by columns 7, 8 which follow for this case.
	9 to 10 11 to 12 etc.	Similar to previous four columns for next data cards for this case.
3)	Case Title Card	
	Columns	Contents
	3 to 4 7 to 12 13 to 72	10 (62H AA Titte for this case
4)	Option Control Card	
	3 to 4 9 to 12	20 Op1: Added mass option selector 0 if added mass as specified in input is used, 1 if J water inertia as specified in input is to be used (See Section 4)
	13 to 16	Op 2: Selector for A-matrix and P vector setup option, 0 for present,
		14
	17 to 20	Op 3: Selector for edit routine to be used at each frequency. O for present.
	21 to 24	Op 4: Selector for final edit routine. 0 for present.

	Columns	Contents	_
	25 to 28	Op 5:	Selector for A-matrix routine. 0 if A-matrix is not printed; 1 if A-matrix is to be printed.
5)	Edit Control Card		
	3 to 4	<u>21</u>	
	9 to 12 13 to 16 17 to 20 21 to 24 25 to 28		numbers for those sections for which ments and moments are to be tabulated ency.
6)	General Data Card		
	3 to 4 7 to 8 9 to 16 17 to 24 25 to 32	Starting Upper li	of sections; this can be at most 80. frequency in CPS mit for the frequency in CPS cy interval to be used in CPS
7)	System Data Cards for Added Mass C	Calculation	1
	3 to 4 7 to 8	sections, other by	umber. The hull sections, shafting etc., can be distinguished from each assigning a system number to each set ns. The range of these numbers can be 80.
	9 to 16	the unsco	ssociated with system in the units in which aled distances between adjacent section up given.
	17 to 24	Initial J	-value for use with this system.

8) Section Parameter: Cards

•
43 or 44
Section number
End condition - normally 0.
1 for $V(0) = M(0) = 0$
2 for $V(L) = M(L) = 0$
System number
Ship mass
Water inertia
(△x/EI) _n
(∆×) _{n, n+1}
(△x/KAG) _{n, n+1}
(1 _{µz} △x) _{n, n+1}
P _n if columns 3 and 4 contain 43, Q _{n, n+1} if those columns contain 44.

9) Scaling Factor Cards for Section Parameters

Columns	Contents
3 to 4	41 if this card contains real parts of scaling factor.
	42 if this card contains the imaginary parts of the scaling factors.
15 to 16	System number for which scaling factors on this card are to be applied.
17 to 72	Scaling factor for each parameter are given in those columns containing that parameter value on the section parameter cards.

10) Special Connection Parameter Cards

3 to 4	<u>53</u>
7 to 8) 11 to 12)	The section numbers for the connection – n and m if m = 0, this will represent a connection from section n to ground.
15 to 16	System number with which connection is to be associated
17 to 24	k _{n, m} Spring constant for connection
25 to 32	C _{n, m} Constant damping coefficient for connection
33 to 40	C _{n, m/ω} Coefficient for frequency dependent damping for connection
41 to 48	(△×) _{n, m}
49 to 56	(△x/KAG) _{n, m}
57 to 63	(△x/KAG) _{n, m} (I _{µz} △x) _{n, m}

Note that in general either
$$k_{n, m'}$$
, $C_{n, m}$ and/or $C_{n, m}$ or $(\Delta x)_{n, m'}$, $\frac{\Delta x}{KAG_{n, m}}$

and $(I_{\mu Z} \Delta x)_{n, m}$ will be supplied depending on whether sections n and m are connected by a spring or are two adjacent sections of a beam. It is important that the system numbers in these two cases be distinct, if J factors for the virtual mass calculation are to be calculated for the beam.

11) Scaling factor cards for parameters in special connections

Columns	Contents	
3 to 4	51: This	card contains real parts of scaling factors
	52: This	card contains imaginary parts of scaling ors.

		Columns	Contents
		13 to 16	System number with which these scaling factors are to be associated
		17 to 56	Scaling factors for parameters in codresponding locations on special connection Parameter Cards.
12)	End of Date		
		3 to 4	99

APPENDIX J

INPUT DATA FOR VERTICAL BENDING CALCULATIONS

PROBLEM NO. CASE	12 Conesco	PROGRAMMER LABEL BYD 217 SHEET / OF 3
RUN TITLE CARD	co Problez Series	s - Project 4-962-Vertical Bending-
DATA CONTROL CARD	3	
05 10 12 10 01 10 000	1 14 25 43 11 19 11 19 11 19	31 33 35 37 39 41 43 45 47 48 51 58 55 57 59 61 63 65 67 69 71
CASE TITLE CARD	12 SSAN 598	Sub merged Sept 16, 1962
1 3		
ā	OP3 OP4 OP5	640 840 740
	67 62 17 11	72 37 41 45
0021000 000/ 00/2	20035	
ć		
GENEDAL DATA CARD		
, 6 , 6	ω ₂ (cPs) Δω (CPS)	
0030 0035 1.0	26.0	
5 .	25	
SYSTEMS DATA CARDS		
SYSTEMS RADIUS	INITIAL J	
0031		

-

.

EM NO. COLO 12 4-94.2 SCTION DATA CARDS STATEM MASS WATER AN (AVEL)) DART OF SCALING FACTORS DOOO	117.6	1					PROC	PROGRAMMER		DATE	E 19/10	
SECTION DATA CARDS 5 9 13 14 15 5 15 15 15 16 16 16 16 16	ğ	OBLEM NO.	Ca			2	PHA		- BHD-139	1	7	건
SECTION DATA CARDS 5												I
Section Color Co	<u> </u>	SECTION	DATA	CARDS					ş	8		F
SECTION SECTION STREAM MASS WATER AND		5	0					41	49	٥,	1	
New Part of Scaling Factors New		SECTION NO.	SNO.	SYSTEM		WATER	$(\Delta x/e_1)_n$	(4x)n,n+1	(2x/kA6)n.nn	(IMZ Qx)""	۵۴	
00410000	8	AL PART	F SCA	LING F	ACTORS							
00410000 00410000 00410000 00410000 00420000 00420000 00420000 00420000 00420000 0043000 00410	8			/000	7.0	7.0	1.0 E-8	(.0	1.0 E-5	·	,	_
MAGINARY PART OF SCALING FACTORS MAGINARY PART	0	410000										4
MAGINARY PART OF SCALING FACTORS MAGINARY PART OF SCALING FACTORS MAGINARY PART OF SCALING FACTORS MAGINARY PART OF SCALING MAGINARY PART OF SCALI	ğ	34100000										_
00420000 00420000 00420000 00420000 00420000 00420000 PARAMETER WILES - UNSCALED 1783 - 17	≥		l	1	FACT							-
00420000 DOMAMETER WILES - UNSCALED OO43 00007	8	9420000										\dashv
00420000 PARAMETER WALKS - UNSCALED 00430000 PARAMETER WALKS - UNSCALED 00430001 0001 2.35 20 4.4091 P.0.5 55 1.9504 00430001 0001 2.0240 2.4195 1.5 .9504 00430002 0001 4.8915 4.8925 2.0140 1.5 .9417 00430003 0001 4.890 5.4045 1.4015 1.5 .9417 00430004 0001 7.8180 7.3140 1.0433 1.5 .3437 00430005 0001 8.4085 8.4040 0.9343 1.5 .3437 00430007 0001 8.4085 8.4040 0.9343 1.5 .3437 00430009 0001 7.7810 8.7356 1.5 .3437 0043001 0001 7.7815 9.7615 0.3358 1.5 .3005 0043001 0001 7.702 9.8055 0.3358 1.5 .3005 0043001 0001 7.703 9.8055 0.3358 1.5 .3005 0043001 0001 7.703 9.8055 0.3358	ğ	2420000										_
PARAMETER VALUES - UNSCALED PARAMETER VALUES 12. F.13 f 12. F.14 f<	ŏ	2420000										-
00043 0 col		ARAMETER	VALUES		CALED					·		-
000/ 25605 4.409/ P.0585 /5 /5 /5 /000/ 2.040 2.8605 3.7922 /5 /5 /5 /5 /000/ 4.8915 4.8935 2.0146 /5 /5 /5 /000/ 4.8915 4.8935 1.5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5	┺	043 000/	1000	'`'	8	5:4795	12.8234	7.7	2.1319	42.44		-
000/ 1.0140 2.8665 3.7922 /5 000/ 4.8915 4.8925 2.0146 /5 000/ 7.8300 5.4045 /.4015 /5 000/ 8.8680 7.3140 /.0433 /5 000/ 8.9685 7.8610 0.9343 /5 000/ 12.4485 8.9340 0.4327 /5 000/ 12.4485 8.9340 0.3358 /5 000/ 12.4485 9.78/5 0.3358 /5 000/ 12.4485 9.8055 0.3358 /5	Ó	043 0002			2.5605	4.4091	P. 05 25	15	. 95'09			+
000/ 4.8915 4895 2.0144 15 000/ 4.8300 5.4045 1.4015 15 000/ 5.0540 6.4470 1.115 15 000/ 8.4085 8.640 0.8343 15 000/ 17.4485 8.9340 0.4327 15 000/ 17.4485 8.9340 0.4327 15 000/ 17.195 9.9340 0.3358 15 000/ 17.195 9.7815 0.3358 15 000/ 17.195 9.8055 0.3358 15	Ŏ	043 0003		1000	2.034	2.8665	3.7932	15	.44.71			-
000/ 4.8300 5.4045 1.4015 1.5 0007 5:05.p0 6.4470 1.1115 1.5 000/ P. FL.80 7.3140 1.0433 1.5 000/ P. FL.80 7.3140 1.0433 1.5 0000/ 1.4485 8.8340 0.4327 1.5 0000/ 1.7185 9.78/5 0.3358 1.5 0000/ 1.7185 9.78/5 0.3358 1.5 0000/ 1.7185 9.8055 0.3358 1.5	Ŏ	0430004		1000	4.8913	4. 1925	2.0146	15	414.5.			+
000/ 5.05-F0 6.4470 /.1115 /.5 000/ F. 40 F5 F 66/0 0.9343 /.5 000/ 17.44 F5 F F F F F F F F F F F F F F F F F	Ó	043 00 05		1000		5.4045	1.4015	1.5	.4642			
0001 P. F. P. P. O 7. 3140 1. 0433 15 0001 R. 90 P. F. D. E. O 0. 9343 15 0001 11. 7810 F. 5. 25 0. 4327 15 0001 11. 7195 9. 4170 0. 3463 15 0001 11. 7195 9. 7815 0. 335 P 15 0001 11. 7195 9. P05 5 0. 335 P 15 0001 11. F0 20 9. P05 5 0. 335 P 15	Ō	0430006		1000		6.4470	1.1115	1.5	.3457			-
000/ 1.78/0 8.5685 6.5655 15 000/ 12.4485 8.8346 0.4327 15 0000/ 12.4485 8.8346 0.4327 15 0000/ 17.7185 9.78/5 0.3358 15 0000/ 17.7185 9.8055 0.3358 15 0000/1/ 76/5 9.8055 0.3358 15	L°	043 000 7		0000	P. F. 8	7.3140	1.0433	15	3754			
000/ 11.79/0 8.5635 6.5655 15 000/ 12.4485 9.4170 0.3663 15 000/ 15.8830 9.4170 0.3663 15 000/ 11.7195 9.7815 0.3358 15 000/ 11.6335 9.8055 0.3358 15 000/ 11.8020 9.8055 0.3358 15	0	043 0008		0000	8.908	F. 0610	0.9343	15	4318.			+
0001 12.44P5 P.9346 0.4327 12 12 0000 15.PP30 9.4170 0.36E3 15 15 15 15 15 15 15 15 15 15 15 15 15	0	0430009		1000	11. 781	F. 56 35	1.5655	75/	.3324			-
000/ 15.8820 9.4170 0.3663 15 000/ 11.7195 9.7815 0.3358 15 000/ 11.0335 9.8055 0.3358 15 000/ 11.8020 9.8055 0.3358 15	10	043 0000		1000	12.44	8,9340	0. 4327	15	.2494			+
0001 11. 7185 9.7815 0.3358 15 0001 11. C335 9.8055 C. 3358 15 0001 11. 8020 7.8055 0.3358 15		04300//		1000	15.00	9.4170	0.3663	75/	4084			-
0001 11. C335 9 8055 C 3357 15 000111 7615 9,8055 0,3358 15	lo	045 0012		1000	11. 71.	9.7815	0.3358	15	.3005			1
000111. 7615 9,8055 0,3358 15	0	043 0013		1000	11.03	9.805-5	C. 332 B	15	.200F.			-
1000111. 8020 9.8055 0.335P 15	۷	04300/4		000	111.7615	9,8055	0.3352	15	. 2005			+
	<u> </u>	00450015	_	1000	11.8020	9.8055	0.3357	15	. 2005			\dashv

·

				•						
TITLE	- 1					PROGRAMMER.		DATE	1/10	١
PROBLEM NO.	, ase		(c) nes co	co 4-942		PHASE	LABEL 840	-277SHEET_	ET 3_ OF Z	N
SECTION PARAMETER	PARAM		VALUES - UI	UNSCALED						
5	6	- 8	,	25	33	. 17	49	. 15		K
SECTION	CONDN. SYSTEM	SYSTEM	MASS	WATER	(0%)	(AX),, n+1	(0x/xA6), n+1	$(I_{\mu Z} \delta x)_{A,B,z}$	2	1.
0043 3016		1000.	11. 4690	9.805-5	2.335	15/	0.2068			
0043 0017		1000	7.8270	9.66.30	0.3776	1.5	. 2221			ļ
0045 00/5		1000	9. 50 40	9.4170	0.3663	13	. 2250			
0043 0019		1000	6.7230	11.3145	0 3884	1.5	40-Ch.	1787.95		ļ ¯
0043 0020		1000	8.4300	8.43.40	0.4284	/3	4 4 4 4			
0043 0021		1000	4.8090	8 4645	0.5328	15	. 2843			
0043 0022		1000	1	7.5730	0.7584	13	.3705			
0043 0043		1000	P. 6385	4.0120	1.3157	15	4810			
0043 0024		1000	6.7440	38805	2.9304	15	1.6863			
0043 0025	1,000	1000	7.9145	1.4655	9.2098	/3-				
2400										
0043										
0043										
0043										
0043		•								
0043										
0043										
0043	·									
0043										
0043										
0043										
0043										
0043										
17.47										

PROGRAMMER DATE
13 4 - 942 PHASE LABEL 8 10 217 SHEET / OF 8
Oct 20, 1942 Conesco Vertical Bunding
23 25 27 29 31 31 31 37 39 41 43 45 47 49 51 68 55 57 60 61 33 55 37 53 71
Masses in Hull J=. 87 For 1 to 3.5 was
0P4 0P5 0P6 0P7 0P8 0P9 0P10
15 19 53 37 41 45
67 57
νς (CPS)
٥,٥/
25
<
2 23 23 OP 002 OP 11 298 11 12 12 12 12 12 12 12 12 12 12 12 12

MANY SECTION AND THE SECTION OF THE

TITLE					PRC	PROGRAMMER		. DATE	
PROBLEM NO.	יי א ה א כיי	7352	Case	. 73	PHASE		LABEL - 8 40 -3	217 SHEET	2 OF V
SECTION DATA CARDS	DATA C	ARDS		36	À				
()	<u> </u>	-		72	23	41	49 57	7 65	73
NO. NO.	CONDN. SYSTEM	STEM	اي	WATER	(Δ×/ει) _α	1+v'v(x0)	((() / KAG) ()	(XAZ ZMZ)	ď
REAL PART OF	OF SCALING FACTORS	NG FZ							
00410000	Ö	1000	16.5800.	0.56.00	C. 990 E 13	13	2-2000		
00410000			17.000.		4				5
00410000									
IMAGINARY PE	PART OF	SCALING	NG FACTORS						
00420000		<u> </u>			E1. 3 86 5 -		0 - 000 -		
00420000		-			1		4		
00420000		-							
PARAMETER V	WALDES -	- UNSCALED	ALED						
0043 CUO	1001 00	1000	260 000	133 200	10-00	15	7.0		
0043 ×		寸	519 600	15 6 50C	1.137	[6]	24.0		
0043 3		寸	660 3CC	333 776	0.375	/3	Ι,		
0043 7		寸	121 800			7.2	13.4		
0043	\dashv	1	634 652	704 000	6910	/2	11.03		
0043 6		7	449 666	744 600	2210	15	6 6 67		
0043 7	-	7	FIC 966	\$ 40 000	0/28	٥.	٥.		
0043 cc/0	-	7	765 000	20% 606	1.013	.67	2.67		
0043 //		7	973 100	000 586	RY10	ة) .		
0043 /4			r 13 7co	, ,	1010		267/		
0043 /2	-	1	792 600	430 COC	0.107	/2	26://		
0043 //	1	1	445 200	430 coc	6.107	12	767/		
0043 /7		\	478 000	930 000	Laro	13	7/30		
0043 /£	-	寸	941 8cc	424 COC	011.0	/3	14.30		
	-								

.

										_
TITLE PROBLEM NO.		Conesco	Cose	6 /3	PR H	PROGRAMMER	LABEL 890	277 SHEE	DATESHEETOF	
SECTION	! !	PARAMETER	VALUES - UN	UNSCALED						
8	6	12	7	25	33	7	46	57	65 73	
36	SECTION END	CONDN. SYSTEM	MASS	WATER	$(\omega/\epsilon_1)_n$	(AX) 1+11	(0x/KA6), n+1	(Iuzdx)n,nti	ď	T
0043	23	1000	1 156 40	\$45,000	2.175	ċ.	0.			T
0043	20%	,	779 043	- (1110 3	15	16.92			Т
0043	26	,	630 900	000 467	0.343	٥.	o.			T
0043	29	/	_ `1	000 217	0.352	15	18.43			Т
0043	30	/	390 350	357 000	0.334	٥.				1
0043	35	′	354 000	452 000	0. 454	15	28.63			T
0043	36	/	J. J. J. 1.00		0 845	15	36.3			
0043	37	,		349 600	1. 440	15.	4.6.0			- 1
ļ	3.8	/	209 700		4046					7
0043	41 0001	1 20	191, 700	48 90c	/0				7.0	- 1
0043	٠,5	7	3.7							- 7
0043	4	7	37							<u>I</u>
0043	77	7	0067							Т
0043	(3	7	3.145							-T
0043	20	7	15,400							T
0043	77	7	15.400							T
0043	22	7	12 261							T
0043	24	3	3 430							T
0043	47	7	5 300			`				T
0043	28	7	32 920							T
0043	31	2	39							T
0043	34	2	27 470							1
0043	33	2	27 470							T
0043	34	7	39							٦

三年 東京公司四個

TITLE _						9	PROGRAMMFR		7	14	
PROBLEM NO.	EM NO.	Cor	Conesco	Case	1.3		· 1	LABEL SFO	713	SHEET 4 OF 2	14
SECTION	11	ARAM	li .	VALUES - UN	UNSCALED						
	SECTION	6 END	END GVCTCL		25 WATER	33	17	49		55	F
	Q Q	CONDI	MI CLC	1	INERTIA	(/EI/n	144,41,000	(~ /kA6 b, m+1	1 (-42 dx), n.	σ _c	
0043	20.39		2000								
	20		1	2000							-
0049	72		7	145,000							
653											ļ
0043											
0043	-										
0043								-			
0043							-				+
0043											╂
0043											
0043											
0043											
0043											
0043	· ·						-				
0043			٠								Ļ
0043											
0043											ļ
0043											ļ
0043					•			•			
0047											_
0043											
0043											<u> </u>
0043											
275									The second secon		J

= 1	TITLE						A G	PROGRAMMER		ı	- 1.	3
ā.	PROBLEM NO.	ON N		-07 24 CC	s c c (a)	3	£	PHASE	LABEL 8 4 0 - 6.6.6	1	SHEET S OF L	7
	kry	0	-		<u> </u>	25	35	4		. 25	£,9	ţi
้ง	SPECIAL		ECTIO	CONNECTION CARDS	205							
<u> </u>	-		٤	SYSTEM	Ka, A	Ca. 3	Ch. m/ks	AXn, m	(4x/kAG)n,m	m (ILZ AX)n, m		
ă	REAL PART	ð	SCALIF	SCALING FACTORS	:TORS							
005	ŝ			1005				//	0.990 E-9	6.		
00	Ñ			6	1.0	1.0	7.0					
005	5	-										
<u>≥</u> 8-L	IMAGINARY	RY PART	RT OF	F SCAL	SCALING FACTORS							
.0052	25			1000					-0.099£-9	6-		
C052	52									~		-
0052	25	-										-
à	PAZAWETER VALUES	ER VA		- UNSC	UNSCALED							
8	2033 20	0 700	800	500 7 000 F 5002	122,200	0.						-
0	6500	7	2	0	122 200	o.						_
0	E100 1100 1500	0 11	2100	CE	31 440	28.3						1
6500	23	*	13	4	/3 600	12.6						4
0023	123	67	20	8	50 000	1.07						-
0053	533	19	7	CB	57 600	71.6						_
0053	153	61	22	8	38 700	33.0						4
ŏ	0053	23	74	ع.	77	14.5			-			
၀	0053	778	27	~	000 71	16.4						4
8	0053	36	48	~	46	104						

TITLE	,					PRO	PROGRAMMER		DATE	
*	PROBLEM NO.		CASE	se 13		PHASE		148EL - 84 0 277	1	SHEET 4 OF B
S	SPECIAL CO	CONNECTIONS	٠,	PARAMETER VAL	VALUES	Ħ	₹	6,7	59. 15.	ĸ
	'n	E	STEV	K _{n,} æ	Cn, m	CAm/w	(AX)n,m	2x/KAG), m	FAZ OX)n,m	
00	55 0000	(x 3/			16.7					
9053	-	_	_	0.0	1.61					
0033	33 50	33	2	80 500	19.1					1
0053	53 30	34	2		16.7					
0053			2		19.8					
3053	53 13	1 40	2	1820 000						
0053	53 41	41	3	1840 000						
0053	53 7	,	/				15-	14.23		
0053	// 650	<i>k,</i>	,				,,,	12.38		
CC53	53 1.4	1. 23	`				15	13.65		
7 (003)	E3 63	3 4.3					15	18.34		
0053	277		,				15	30,75		
0053			,				13-	25:02		
0053	53 . 55	, 4					15	108.5		
0	ئد : و200	· j.	?			.09				
0003		- 3	7			60.				
0023	23 40		2			.011				
0053	53 42	2	2			110.				
0	400									
0033	33									
8	0053									+
ŏ	0053		_			,				
ধ	853		_							

All Lindson

-

•

-

: : :

- ta s consideration and the second

資金をよるでする こうし

Side 1

<u> </u>	TITLE GBRC1: DATA FORMAT I PROGRAMMER DATE.
<u>ге</u> д	RUN TITLE CARD
1	DATA CONTROL CARD
1	30000101/2010130 02 41 01 42 02 43 01 25 21 02 43 01 45 20 45 20 1 45 45 45 45 51 55 55 57 59 51 51 51 51 51 51 51 51 51 51 51 51 51
<u></u>	CASE TITLE CARD. CASE TITLE CARD. CASE 13 WITH Propolation System
4	
J-12	P2 393 0P4 0P5 0P6 0P7 0P8 0P9
	9 3 17 21 25 29 33 37 41 45
	00210000 C001 0037 0041 0045
L -	
	SENERAL DATA CARD SENERAL DATA CARD CPS) DATA CARD CPS) DATA CARD
dl	3,5
	30040
	SYSTEMS RADIUS INITIAL J
	1500
	[bo3]

200 C

2 2 ۵ 01 65 SHEET DATE (IMZ ZX), n+1 2591.0 59.0 LADEL - 1840 - 222 2 10x/kA6)n.n+ -0.099 E -9 0.990E - 9 0.990 £ -9 4 (4x)n,n+1 196.5 PROGRAMMER PHASE __ ₹ .990 E-12 -. 099 E-12 0.990 E-13 $(\Delta x/\epsilon_1)_{n^i}$ 641.5 1214 INERTIA 456800 52 GARC 1: 2ATA FORMAT SCALING FACTORS 19 66 30. 8.0000 13400 \$340. MASS 17900 REAL PART OF SCALING FACTORS - UNSCALED SECTION DATA CARDS 0003 0003 SECTION END SYSTEM 6003 1000 8000 6000 b VALUES IMAGINARY PART PROBLEM NO. - 0043 0044 0043 0045 0043 00 43 PARAMETER 00410000 00420000 00420000 00420000 00410000 00410000 0043 0043 0043 0043 0043 0043 0043 0043 0043 0043 TITE_ 0043 0043

· 1

	2000		DATA	FORMAT		PROGRAMMER .			DATE	
PROBLEM NO.	NO.	7	*			PHASE	LABEL BY	- CTS - DY8	3	OF 25
k y	o	20 20	71	25	35	4	. 8	. 22	k,	li)
	ļ	·								
SPECIAL	CONNEC	CONNECTION CARDS	RDS							-
C	E .	SYSTEM	A Ka, m	C3	Cn.m/ks	AXn, m	(4×/kAG), m	m (I 42 4x)n,m	٤	
REAL PART	b	SCALING FACTORS	CTORS					1 :		
1500		6000	1 1			6.0	0.990 E-9	6		
903					-					
0051										}
IMAGINARY	RY PART	٠,	OF SCALING FACTORS	8						
252		6000	-				099 E-	-9		
0052										
2500							~ ~			
AZAMETI	PAZAMETER VALUES		- UNSCALED							
0033	37	48 000 3				149.875	J.			
	- [43 0002	232 000.							
	6 /4	44 0002	_1			<u>/</u>				\dashv
	2	2000		40.						
0053								·	·	
0053	-									\dashv
0053										
0053									 	
							, i			

Maria Comment

TITLE 6880 /: 1	DATA FOR	ORMAT 1	PROGRAMMER	DATE
EM N	. */		— PHASE —— LABEL [840]	רוז
·	•			
RUN TITLE CARD				
DATA CONTROL CARD	it			
20000 10 01 10 000	7 19 11 25 25	7 19 31 35	35 37 39 41 43 45 47 44 51 55	17 82 70 50 50 12 87 78 35
CASE TITE CARD	/4 J :- P2	Far 45	To 25.0 cps	
COPTION CONTROL CARD				
J-15	003 004	005 006 0	0140 640 840 740	
20200000 3 3	1 7 21 2	15 19 13	37 41 45	
EDIT CONTROL CARD				
000510000	2 12 7	62 53		
GENERAL DATA CARD			,	
3€. °0, (CPS)	(sd) ² (σ	(SPS) كال		
0030 0045 3.5	1 25.	0.5		
SYSTEMS DATA CARDS	INITIAL J			
(603)				

MERSON signed with appropriate plant of the state of the

Pr M مع SHEET A 65 DATE (DX/KAG)n.ny (IMZ DX)n.n. 277 21 0 48 0.990 E-9 LABEL. 4 (AX)n,n+1 PROGRAMMER 18 PHASE 4 9. 90 E-13 (4×/E1) 33 INERTIA 20000 WATER 52 SCALING FACTORS **MASS** 165200- 1000 REAL PART OF SCALING FACTORS - UNSCALED SECTION DATA CARDS END SYSTEM IMAGINARY PART OF VALUES TITLE GARC PROBLEM NO. _ SECTION NO. PARAMETER 00410000 00420000 00420000 00420000 00410000 00410000 0043 0043 0043 0043 0043 0043 0043 J-16 0043 0043 0043 843 0043 0043 0043

The state of the s

からい ラマー

PROSLEM NO. CASE AS	DATA FORM	Case 14	PROGRAMMER		DATE OF 4
RUN TITLE CARD					
COOOOO (62 H & A					
DATA CONTROL CARD					
20 271 ON 241 ON 251 ON	1 19 15 15 TH	1 16 8E 1F PA	37 39 41 43 45 47 49 51	19 18 18 18 11	1 6. 75 %
225E TITE CARD	Similar To	Case 1#	Escapt that Ex	Eases is at Pas	Prapallex
SPT:ON CONTROL CARD					
290 .cc	0P3 0P4 0PS	OP6 097	010 6d0 8d0		
\$020000-1	17 21 25	66 62	37 . 41 45		
ED-T CONTROL CARD			•		
ģ, ć	17 2: 25	62			
GENERAL DATA CARD					
ις ()	(Sd) かな (Sd) ² の	(PS)			
	7 25				
SYSTEMS DATA CARDS					
SYSTEMS RADIUS	INITIAL J				
1800					
-					

	6			, ,,,,		03044460		DATE		
TIME	S S S S S S S S S S S S S S S S S S S	1 '		* 181187	PHASE		LABEL TOWN 233		ET 2 OF 92	
PROBLEM NO. SEGIS E	4	7					File .			T
SECTION DATA CARDS	DATA	CARD					Ş		*	
3	0	13		25	55	41	43),		T
SECTION NO.	END CONDN.	CONDN. SYSTEM	MASS	WATER	$(ax/e1)_{\alpha}$	1+u'v(xy)	(** /k 46)n.n.n	(IMZ ZMZ)	α ε	\top
REAL PART	OF SCA	ILING F	ACTORS						-	T
00410000									-	T
00410000										T
00410000										T
IMAGINARY PART		OF SCALING	ING FACTORS						+	7
00420000										-1
00420000					·					T
00420000										T
PARAMETER	VALUES	í	- UNSCALED							T
- 0043 0041	2000	1000	19/ 700.	48 900						7
00430045									7.0	T
0043										T
0043									-	1
0043										T
0043										T
0043										1
0043										T
0043										T
0043						`				T
0043										7
0043	_									T
0043	_	_								7
0043										T
0043		_								コ
	1	1								

Marie ales

PROBLEM HIC COSE 15	FORMAT 1	PROGRAMMER	OATE SHEET SHEET	3 9 4
PUN TITLE CARD				
000000 62 H 4 4				
CATA CONTROL CARD				
10 TO 2 NO TYPE etc.				
2 62 5 6	8 15 17 19 31 35	39 39 30 41 43 45 47 49 51	35 55 77 59 61 63 e	
CASE TITLE CARD				
. 33:000 (62 HAA Cose 65	T. 87 Far	1.0 to 3.5 cps		
COPTION CONTROL CARD				
P2 0P3	094 095 0P6 (0190 640 840 740		
2020000 -	- 5			
ED T CONTROL CARD		•		
2 6 6	25 29			
CHARLES OF THE CARD				
	s) ∆W (CPS)			
7.0				
,	25		•	
SYSTEMS DATA CARDS				
SYSTEMS RADIUS INITIAL	b			
NO CO				

e managemental section of the contraction of the co

TITLE GRA	GARCI	DATA FO	FORMAT 2	PRC	PROGRAMMER		DATE		
PROBLEM NO. CASS	}	16		PH	1	LABEL BHO-	रार	ET 4 OF 4	<u> </u>
SECTION DATA CARDS	NTA CARI	DS							T
6 6	=		25	33	4	49	57		r
SECTION EN	CONDN. SYSTEM	M MASS	WATER	(Δ */ ε1) _α	(4×)n,n+1	(AX/KAG), AH	(TMZ DX), n+1	ď	
REAL PART OF	SCALING	OF SCALING FACTORS							
00410000	1000	.002591	4 SEE 200.		12.0	0.990 E-9		7.0	
00410000									
00410000									
IMAGINARY PART	b	SCALING FACTORS	•						
00450000									
00420000									
00420000									
PARAMETER VAL	VALUES - UN	- UNSCALED					•		
. 0043									
5 0043						,			_
0043				•					
0043									-1
0043									_
0043				1					
0043									-1
0043									7
0043									
0045									7
0043									
0043									_
0043									7
0043							,	- 1	7
0043									\neg

manufacture of the

.

TITLE CARES CA	S.CO. COSO 1/2 DHASE LABEL BYIG 277 SHEET LOF 2
RUN TITLE CARD	V) 598 OCT. 26, 1962 Coresco Vertical Berling
DATA CONTROL CARD NO TYPE NO TYPE EE. ODODION ODOLO 30	30 03 41 02 42 32 14 30 31 51 02 32 32 15 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
245E TITE CARD 200E	16 16 Sections + Prage System I = 0.17 For 40 To 35 spe
S SPTION CONTROL CARD	
10000020C	1 OP3 OP4 OP5 OP6 OP7 OP6 OP9 OP10
ED:T CONTROL CARD	0021 0034 0034 003
GENERAL DATA CARD	ω ₂ (cPs) Δω (cPs)
0030 0030	3.5 0.8
SYSTEMS DATA CARDS SYSTEMS RADIUS	INITIAL S
0031	

TITLE 64	CBRC1		DATA FC	FORMAT 2	PRO	PROGRAMMER		DATE	100
PROBLEM NO.	9	279	7/6		PHASE		LABEL BHIO	277_ SHEET-	ET - L OF Z
SCOTION NATA CABBS	ATM	CABD							
5	֓֞֞֞֟֞֝֟֟֝֟֟ ֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞			25	33		49	57	65 73
SECTION NO.	ENO SABY.	SYSTEM	MASS	WATER	(4x/e1)n	(4x)n,n+1	(AX/KAS).nn	(AX/KAS),,ny (Juz Dx),,n+1	مځ
REAL PART	OF SCA	LING	SCALING FACTORS						
00410000		1000	16.500 -	4.cck00.	. 990 E-12	12.	0.990 € -9	1.0 E+6	1.0
00410000		2	16.5000	·	0.				
00410000		3	17.5600.		.990 €-12	1.0	0.9908-9	2591.0	1.0
	PART OF	3	SCALING FACTORS						
00420000		7000			019E-12	•	0946-9		
00420000		000 3			99 E -13		099E-9		
00420000			,	,					
PARAMETER	VALUES	- UNS	- UNSCALED					·	
1 0043 000 1	6001	j soo	75:00	6350	10.0	10,5	167.5		
	•	1	3385 Oc.	567500.	21.76	33.	31.7		
0043 3		1	1578235.	1207000	0.674	7%.	27,38		
0043		1		1291 coc.	6 330	29.	28.95		·
5 5000		1	1342000.	15 15000.	0.260				
0043		<i>l</i> ·	1642000.	12530000	0.236				
0043 //		7	235 7950.	2266000.	702.0	30.	23.0		
0043 13			416000.	967 0001	00.196	.il	17.5		
0043		/	3311400.	2750000	0.271				
0043			\$41943.	514 000	0.312	7.	7.01		
0043 /9		1	386 600.	226 000.	0.341	11.	29,12		
0043 20		7	192 3 660.	1680000	0.750				
0043 27			601150	PC1000.	1.659	12.	63.5		
0043 2P	7	1	200 1500	AC9 300.	2.706				
0043 30	-		223 720.	41800	5.99				

J-22

100	2	CARCI	6	DATA FO	FOR MAT 2	Dag #	DPOGDAMMFR		DATE	
DROBUT	PROBLEM NO.	30		11.			'	LABEL BINIG	277 SHEET.	1-3-0FZ
SECT	SECTION F	ARAM	IETER	ALUES - U	UNSCALED					
	5	6	2	,	25	3)	7	49		I
	SECTION	CONDN.	CONDN. SYSTEM	MASS	WATEK	(m/E1)u	(AX),11-1	(0x/k46)m	(Tazde)nint	ď
0043	33	2000	1002 0001	334.20.	11200.	20.0				
0043	9		2							
0043	2		2							
0043	6		2.							• • !-
0043	0/		2	31.45.					-	
8			,	/						
0043			2			·				
8			2							
8	11		7						·	
			. 7							
3 0043	_		7	32920.					-	
			7	Ш						
0043			2							
0043	25		7	37470.						
0043	26		2	3991.						
0043	29		7	4300.						
0043	_		7	125'00.						
0043	3.2			212500,						
0043			6	134.00.		1314	196.5			
9043	35		7	3 \$ 220.		641.5	55.125		5%0	
0043			3	27900.		26.5	-			67
000									+	
0043										
8	2									

SPECIAL CONNECTION CARDS REAL PART OF SCALING FACTOR OOS! OOS! OOS! IMAGINARY PART OF SCALING OOS2 OOS2 OOS2 OOS2 OOS3 DOOS OOS7 OOS3 OOSS OOS
NARY PART OF SCALLINARY PART OF
AL CONNECTION MART OF SCALIN NARY PART OF SCAL
NA N

The second

1									DATE	
PROBL	PROBLEM NO.		-			PHASE		TE		T 5 OF Z
SPECIAL		CONNECTIONS	٠.	PARAMETER VALUES	UES					
	, ,	0	13	ì	٠	33		. 19	. 57	£2 - 78
	כ	E	SYSTEM		Cn,m	س/ سرح	(4X)n,m	(0x/KA6),	(Tuz Ox)n.m	
0055	5000	2000	2000	7.3						
0053	7		2							
500	کی	7	2	123 200.						
0053	7		1							
0023		9	2	31 440.	29.3					•
2053	4	//	2	13 400.	12.6					
0053	1.3	14		50	40.7					
1,0053	1.3	,2,	1 2	51 60°.	41.6		-			
0053	1,3	51	, 3	38 700.	33.3					•
0003	1.3	77	1	_	14.5				-	
0053	20	12	4	00001	16.4					
660 -25	20		4	26 000	104.					
(500)	20	13	2		2191					
2053	. 2c	29	7	80500	79.1					
0033	20	25	7	10500	19.1					
: 00g)	01		7	16700	1617					
0023	32	29	2	16800	19.8	·	·			
0053	30	11		184 0000						
303	30	32	8	1520000						
5003	31		2			110				
33.53	32	-70	2			110				
037							·			
CC 23										

4 57 Fex 3.5 To 42 Sps £ 0.2465 w = 0.5cm SEET ŕ DATE 3 ē 3 2 एस ०५८ ۵ 4 ۳ 55 w = 10,0 cps Te 25.0 cps 10.0 CF & 8 5-51 LABEL 4 OPIO ÷ - 3.5 cps To PROGRAMMER 3 **\$** 11 SECTIONS + PROP SYSTEM 640 ₩ PHASE 000 R 3 OP7 * * **9**60 AW (CPS) 67 2 FORMAT H 200 25 25 52 9 4 (Sd)²0 INITIAL J Ä 40,0 0 9 3 001000 (62 HAA Case 16 NO TYPE NO TYPE etc. 2090|cr|/c|000|00/120|c000 200 GENERAL DATA CARD GARCI SYSTEMS DATA CARDS. COPTION CONTROL CARD. 3.2 DATA CONTROL CARD. EDIT CONTROL CARD. RUN TITLE CARD_ 000000 62 HAA CASE TITLE CARD. 2000 0500 PRODLÉM NO. 00213000_ 20200000 L 1500 1500 TITLE

The state of the s

J-26

GBRC/ DATA FORMAT 2 PROGRAMMER DME SMED DME											
TION DATA CARDS TION D	TITLE	66	1282		FORMA	4	GRAMMER		DAT	7	I
9 13 14 CARDS 9 15 14 14 15 57 6, 1 Cand, 3 15 15 14 14 15 57 6, 1 Cand, 3 15 15 14 14 15 57 6, 1 Cand, 3 15 15 14 14 15 57 6, 2 CALING FACTORS PART OF SCALING FACTORS WHUES - UNSCALED	PROBLEM NO.		850	77		PHA:			רנז	2	7 %
# \$\$\text{\$\ext{\$\text{\$	SECTION	DATA	CARD	2							
######################################	5	٥	=	17	52	33.	٠.	49	57	65	r
200 0001 000	SECTION NO.	END.	SYSTEM		WATER	(4×/EI) n	(**)n,n+1	(4x/kA6)a.n.	(Int 64), no.	ď	
000 000 000 000 000 000 000 000 000 00		OF SC	ALING F	ACTORS							
000 000 000 000 000 ETER VALUES - UNSCALED	00410000		1000	1655.00.	.00.21.35	990E	12.			7.0	
000 000 000 000 000 000 000 000 000 00	20410000										
OOO OOO IETER VALUES - UNSCALED	00410000										
OCO OCO OCO ETER VALUES - UNSCALED			'	ING FACTOR	2						
OOO OOO ETER VALUES - UNSCALED	00420000						•				
ETER VALUES - UNSCALED	00420000							,			
ETER VALUES	00420000										
	PARAMETER	MUE	1	CALED	,				·		
	0043										
	0043										
	0043										
	0043										
	0043										
	0043										
	0043										_
	0043										
0043 0045 0045 0045 0045 0043	0043										
0043 0043 0043 0043	0043										\Box
0043 0043 0045	0043										
0043	0043			•							
0043	0043			·							
0045	0043										1
	0045					:					\Box

•

.

.

•

overse a communication of the second section of the section of the second section of the secti

		ムトムの	FORMAT	77 7	PRO(PROGRAMMER		PATE		
E	NO.	Cose	77		PHASE		LABEL - BMO-	SHEET	1-2	or 6
SECTION DATA CARDS	DATA	CARDS).k	13		44	25	53	K
6 Grant	CNU	-		WATER	\\\\		(X,)X4)	/T.(* Az)	٥	
NO.	SONO?	CONDY. SYSTEM	MASS	NERTA	(-/E1/n	1+v'V/x01	/KAG/A.n#	/KAG/A, AH (- 12 6 - 12 1. 11 4. 11	5	T
REAL PART OF		SCALING FA	FACTORS							_
00410000		1000	16.5000	406.00.	0.99 4 6-11	/2.	6-30650	o.	4.0	
00410000		2000	1keros.	٥.	0.	.,	0.	٥.	7.0	_
00410000		E 000	18.68.00	٠,	, 990€-12	.,	0.990 € -7	23 811	7.0	
	PART 0	F SCALI	OF SCALING FACTORS							
1		1000	· o	o.	-0.099 E-12		2-2 660			
00420000		6003			-0.099 E-13		099E-9			
00420000										1
i	VALUES	ŧ	- UNSCALED					·		
	1000	1000	75'00.	4250	70	413	.6//			
6 0043		`	.67750.	47200,	1.26		2.5.6			T
0043		,	157730.	115700.	1.38	4.	46.3			
0043 4		/	25.27.00	20,000.	1.31.3	9,	3.70			1
0043 5		1	29.2750	3 1.7000	0.317		19.3			
3043			-	47100	497.0	3,	(413			
		′	×32,000.	36, 600	0.101	7.	6.73			
0043		7	341250.	200,000	0 572	2.	6.83			
0043 9		,	337000.	427600	0.133	//:	12.5			7
0043 5070			A 99450.	376.000	6, 134	70.	2.01			1
		/	₹10 806.	4.7/ 600	0.0343	Č.	6.42			1
0043 /2		'	207 410	27.000	0 073					
		`	217734	2.63600	0.0198	70	2,72			1
		`	583250	3007.07	0.63.7	.91	x./c			7
										•

EM NO. CESS 110N PARAMETER 5 9 13 84CTION END. SYSTEM 20 1 1 21 2 1 22 1 23 1 24 1	TER /	VALUES - UN MASS 52475°C. 2983°C. 9199°C. 91600°. 7160°C.			awimex -	LABEL SHO	מ	SHEET 3 OF 8	l had
OARAMI CONDIN		VALUES - UN MASS 53475°C. 5985°C. 81345°C. 7160°C. 7160°C.	4	33					
OARAM CENDA		MASS 52475°C. 5985°C. 7985°C. 745°C. 745°C. 716°C.	4	35			ı		
G T T T T T T T T T T T T T T T T T T T		MASS 53475°C. 2985°CC. 91345°C. 91600°C. 7760°C. 100910°C.		33			į		
NA CONTRACTOR OF THE CONTRACTO	SYSTEM / / / / / / / / / / / / / / / / / / /	MASS 53475°C. 5985°C. 81345°C. 145°C. 716°C. 70°91°C.	WATER		. 4	49	5/	65	2
		53475°C. 5985°CC. 81345°CC. 91600°C. 7860°C. 1009100.		$(\omega/\epsilon_1)_n$	(AX),,n+1	(0x/KA6), n+1	(Imzdx)n, nen	σ_c	
		286.5 286.5	360000.	0.0.206	9.	6.30			
		745 co 1/6 co 1/	.00013.5	0.6679	10.	7.64			
		0 11 6 0 11 6	745.000.	0.01577	14.	10.3			
		9116	€ 3000€	0.1070	16,	12.2			
		1800/	86 8 20 G.	0-1000	,7,	6,6			
	1	18001	777006.	0.0994	13.	10.3			
			9530001	0.1317					
	·		1150000,	0.218					
	7	541 943.	FA9 000.	0.816	9.	70.6	·		
35 .	/	386 600,	336000	0, 153	5.	7617			
34	,		45 6 0 00.	0.247					
36	/	5.62000.	623000	0.353					
25	1	3 775'00,	.000107	0.433					_
43	,	334500,	434 000.	0.561	11.	23.2			
44	<i>j.</i>	2365'00.	123000	6/7.0	.6	23.0			
45	,	11475'0,	15/000	0.632	£.	13.9	•		
46	′	10/050,	91100.	6.772	۶,	17.6			
47	1	1000.5.5	. \$ 900.	1.063				ļ	\Box
49	'	44 200.	486 00	1. 794					_
57	,	225,770.	42800.	4.773		•			_
34 0007	/	334201	11300.	15-					
13	2	3730							
14	7	~							
		7.000	1 4541 1 3 77. 1 3 77. 1 3 77. 1 1 1010 1 1 14. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	454100 3,12000 377500, 334500, 1,47500, 1,47500, 1,47500, 1,47200, 1,4	1484100 45 6000 0 562000 623000 0 377500 623000 0 334500, 434000 0 114750, 434000 0 147200, 48600 0 44200, 48600 0 1325770, 42400, 13000, 13	454/00	484/00, 456,000, 0.353 522,000, 623,000, 0.353 377,500, 423,000, 0.412 374,500, 423,000, 0.412 1,147,500, 423,000, 0.427 1,147,500, 421,000, 0.437 1,147,500, 421,000, 0.437 1,147,500, 421,000, 0.4373 1,147,500, 421,000, 1,17,2 1,147,500, 421,000, 1,17,2 1,147,500, 1,17,2 1,147,500, 1,17,2 1,147,500, 1,17,2 1,147,500, 1,17,2	484/00, 456,000, 0.353 522000, 623000, 0.412 377500, 421000, 0.412 374500, 421000, 0.419 121500, 421000, 0.419 114750, 42100, 0.437 157000, 486,00, 1.794 537000, 42100, 4.772 37300, 1.500	484/00

A.

71716	GARCI		DATA FOR	DMST 21	Cad	DOOGDAMMER		PATE	
PROBL	PROBLEM NO.	Cd	77		PHASE		LABEL KWG 227		T 4 OF 8
SEC	SECTION PAR	PARAMETER	VALUES -		žî.		\$	57	25 Ex
	SECTION END. SYSTEM	IDN. SYST	EM MASS	WATER	$(\omega/\epsilon_1)_n$	(Ax),, nr!	XXA6 LAN	Luz dx)ninh	ď
0043		2003	2 6900.						
0043									
0043			15200						
0043			1520						
0043			13301				·		
0043	3.1		2 . 2450.			·			
0043	أنزو		3,300.		·				
0043			32520.						
0043								·	
0043	4 6		3 47470	•					
T 0043	//		2 27470.						
8	(1)		.7 498/.						
8043			2 4300.						
0043	2,7		4 133.000.						
0043	. 53		2 125 CC.						
0043	20		3 14600.		1214		·		
0043			3 823C.		641.5	55,125		59.	
0043	56		3 27900.		75.5				7.0
8									
0043							·		
0043						•			
000									
0043									
8		4							

100	Ŀ	 						-				\dashv	_		-	\dashv	\overline{A}	-	\overline{A}	\dashv	-		
DATE SHEET SHEET	. 65			F																			
רוז	57			(IMZ DX)n,m																			
LABEL BHO				(4x/KAG)n.m		0.990 E-9	0.	0.990 E-9		099 E-9	099 E-9												
PROGRAMMER	14			AXn, m		13	ó	/.0				·											
	. }€			Cn.m/62		0.7	7.0	. 1.0															
FORMAT 3	25			Ca, B		0'/	6.7	7.0								34.3	7101	60.7	7'14	33.3	14.5	10.4	
			05	Ka, a	ORS	9.7	0//	1.0	NG FACTORS				ALED	123200.	123300,	31 440.	13600.	30000	J. 1.000.	3 & 70C.	14400,	16000,	
DATA Case	7) · 81		CONNECTION CARDS	SYSTEM	SCALING FACTORS	1000	2	3	ഗ		3		- UNSCALED	6000	×	2	2	2	2	2	7	4	
688c (:	0		NFCTIO	٤					PART OF					_	14	13	61	27	44	36	18	35	
TITLE 68					ART OF				1				PAZAMETER VALUES	6100 8100	7	17	77	26	36	29	29	h£.	
TITLE	Sc 1		SPECIAL		REAL PART	1800	ğ	1500	IMAGINARY	0052	0052	2500	PARAN	9033	0253	0053		0053	0053	0053	0053	6500	

こうちゅう ころしめい は最重要な

J-32

			<			•		TELL TABLE	נוש		6 OF 8
PROBLEM NO.	NO.		7			1	HASE	5149 -			
SPECIAL	33	CONNECTIONS		PARAMETER V.	VALUES						
•	69			<i>'</i> 17	. 25	. 33	4	. 6 9	.57	. 63	۴
	r	E	SYSTEM	Kn,m	£,00	<i>س/ ۳۷</i> ۷	m,n(Xb)	(0x)KAB,	h, m (I42 AX)n, m	ε	
0055	CO38 00 37	06 37	1007	16700.	14.7						
0053	4.0	40	2000	1.05,00.	79.1	-					
6500	35	//	2000	Des. 200.	79.1						
6500	3.6	42	6003	16700.	16.7						
5200	47	76	6002		8781						
5005	57	2,5	22 6002	1830000.							
0053	jć	5.3	2000	1520000.							-
0053	(,)	CC13,	1000				9.	7.36	20		-
0053	12	20	20 000 /				6	7.45			-
.0033	26	29	1000				. 37	15:2			-
5000	2.5	32	32 000/		-		.22.	26,3			+
0023	34	36	36 0001				16.	24.2			
6000	36	33	1000				16.	18,6			
0053	25	43	1000				76.	32.2			\dashv
0053	47	49	7000				2.42	30.7			
0003	44	3.1	1000				15.4	78.4			-
6000	22	2	0001				12,	. 120			-
6500	49	50	2000	232000							+
2053	5.4	5,0	2002	538000					-		-
60033	0,0	5.5	E 300				196.5				_
5053	70 /		7000			· 47					
0.053	2.2		600			7.7				-	-
co53	3.5		6001		40						1
5003	34	3.6					149.875	۶ ا			-

.

San .

TITLE GBRC 1: DATA FORMAT / PROGRAMMER PROBLEM NO CESS 17	— DATE
RUN TITLE CARD	
000000(62 HAA	
DATA CONTROL CARD	
5090 c/ zo o/ 30 0 4	17 65 75 65 19
CASE TITLE CARD	
Cose 17 35 Sections + Prep System J= 83 Fer	3.5 To 25.0 C.ps
CONTROL CARD	
20220000 3 3 17 21 25 29 33 37 41 45	
EDIT CONTROL CARD	
00210000 3 13 17 21 25 29	
GENERAL CARD	
3.5 ερε Το 10,0 ερε Δω (CPS) Δω (CPS) Δω:	
75 25 10.0 cps To 25,0 cps A w	o = ,Seps
SYSTEMS DATA CARDS	
SYSTEMS RADIUS INITIAL J	
0031	
0031	

は ちょう

TITLE	GBRC 1:		DATA F	FURMAT	2 PRO	PROGRAMMER		DATE		<u> </u>
PROBLEM NO.		Sore	12		PHASE		LABEL - SHO - 277	217 SHEET	E & 9.8	7
	-									T
SECTION DATA CARDS	ATA 2	CARD				. ₹		25	. 5	r
SECTION	SECTION END SYSTEM	SYSTEM	MASS	ATER	(4x/g1)n	(4x)n,n+1	(2x/kA5)2,04	42 AF), A+1	ď	
REAL PART	OF SC	ALING F	SCALING FACTORS							
00410000		1200	16 0000	. 661630.	51- 3 066.	12.	C.970 E-9		1.0	T
00410000										T
00410000										T
IMAGINARY	PART	OF SCAL	SCALING FACTORS							7
00420000				·						7
00420000					٠					1
00420000										T
PARAMETER	VALUES		- UNSCALED							T
0043	٠				·					7
7 0043										
£ 500										
0043										1
0043										T
0043										T
0043										7
0043										T
0043										7
0043										T
0043										1
.0043										T
0043			·							T
0043		-								T
0043										7

-

TITLE GARC	100	DATA FOL	FORMAT 1	PROGRA	MMMER	רנצ מאן אפרו	DATE	0.0
	•							
RUN TITLE CARD	RD							
DATA CONTROL CARD	TROL CARD							
107 8 CEOC	15 10 08 10 01	1 0 14 10 15	25 Tr 29 N	35 37 39 41	43 45 47	49 51 55 55 57 3	59 63 12 97	12.
CASE TITLE CARD		15 15 31	Sections + Press	, System	7 6	Ditermined For	y Sine Mede	5 80.00
OPTION CONTROL CARD.	SOL CARD	003 0P4	OP\$ OP6) 840 740	0140 640			
	1 (3) 5	12 21	15 19	37 41	45			
EDIT CONTROL CARD.	CARD							
0000000	<u>k</u>)	12 21	62 23					
LGENERAL DAT	DATA CARD	(3, (006)	(202) (206)					-
0030 002¢	<u> </u>	0-44	15 Jei	(0.0 0.0)	To 15.	15.0 cps 0.21	1 1	
SVCTEMS DATA CABDS	TA CADAS							
SYSTEMS	RADIUS	INITIAL J						
1003 1500	16.0 (44)	. 3.7						1
1600								

おおおおお ないれかがる

		1	?	-	igg		-	-			F	$ar{L}$		_	-	L	L	F							
	SHEET _ 40_ OF		۵	F	1.0																				
	2.F.		(IMZ GX)] ,·													
	LABEL - SMG-		(bx/kAK)		0. 990 £ -9																				
			4 x >0.0+1	T	13.																•				
PROGRAMMER	PHASE		(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		9,906-13																				
			ATER	\mathbf{H}	165530								·												
0/			MASS		.0025'91			SCALING FACTORS				VLED.													
•	25.6	CARDS	SYSTEM	LING FA	. /000	\vdash						- UNSCALED													
		DATA	END SYSTEM	or SCA				PART OF				VALUES													
יוורב	PROBLEM NO.	SECTION DATA CARDS	SECTION NO.	REAL PART OF SCALING FACTORS	00410000	00410000	00410000	IMAGINARY F	00420000	00420000	00420000	PARAMETER	0043	0043	0043	0043	0043	0043	0043	 0043	0045	0043	0043	0043	0043

PROBLEM NO. Case	DATA FORMA+ 1 PROGRAMMER 19 SHEET 11	٥ ١
RUN TITLE CARD		
DATA CONTROL CARD NO TYPE NO TYPE etc.		
	65 76 60 60 10 57 58 18 18 18 18 18 18 18 18 18 18 18 18 18	Ţ,
CASE TITLE CARD	85 Sections + Prop System - Sine Made J-No Hall Damping	
OPTION CONTROL CARD		
240 ICC	0P3 0P4 0P5 0P6 0P7 0P8 0P10	
f F D000000	17 21 25 29 33 37 41 45	-
EDIT CONTROL CARD		+
00210000 9 13 17	12 25 29	
GENERAL DATA CARD		
ک (CPS) کی چیچ کی (CPS) د	ე (c ρs) ს ს ს (c ρs)	
5 0500		
		T
SYSTEMS DATA CARDS SYSTEMS RADIUS	INITIAL J	
1500		7
1600		

J-38

TITLE	GBRC	DATA		FORMAT 2	PRC	PROGRAMMER		DATE		
PROBLEM NO	Cese	2.8	19		H	1	CE DAME 1300		SHEET 12_ OF.	
SECTION DATA		CARDS								1
5 6			,	25	33			57	63	۳
SECTION NO.	CONDN. SYSTEM	TEM	MASS	WATER	(4x/EI) _{n'}	(4x)n,n+1	(AXKAS)	(AX/KAS) (Juz Ox), no.	ර	
REAL PART O	OF SCALING FACTORS	G FAC								
00410000	700	2. /0	16,5730	165730.	600 E-13	67	1,000 6-4		97	
00410000	900	0.003	165.500.	90	1	-	1. 000 F - 9	0 100	ōç.	
00410000									2	
IMAGINARY P	PART OF SK	SCALING	S FACTORS							
00420000	00	1000			q		0			T
00420000	90	6003			Ø		9			T
00420000										Γ
PARAMETER 1	WALLIES - L	- UNSCALED	רבס י					·		T
0043	•									Γ
0043										
0043										
0043										1
0043										Γ
0043		·								Π
0043								*		Γ
0043										
0043		-								<u> </u>
0043						•				Γ
0043		-								T
0043										<u> </u>
0043										T -
0043								-		Γ
00.43										Γ
										I

養経常はまけ……

·* 16.

			1 1	- 1	1																		
52					Ε	} 			min y														
				(T. A.)	ישלעה בעלים)														•				
5						1.000 E -9	1.000 E-9			0	Q												
4				AX	m, w	12	//																
35				Com	3	1.0	1.											·					
25					E,	1.0	١.	•							·					,			
71				- 1	TORS	1.0	1.	,			.	•/	CALED										
1 20				NON CAP	LING FAC	\	3				3		•]										
. 0				CONNECT	გ	-			PART				ER VALUE	_									
kŋ				SPECIAL	REAL PAR		900	905!	IMAGINAF	2500		2500	PAZAMETI	0053	0053	0053	0053	0053	.0053	0023	0003	0053	0053
	9 (8 :17 25 33 41 40 57	9 (3 17 25 33 41 40 57	Q (8 · 17 25 33 41 40 57	25 33 41 40 57	9 18 17 25 35 41 40 57 L CONNECTION CARDS TO THE SWITTEN OF THE	5 0 18 · 17 25 33 41 40 57 1AL CONNECTION CARDS N M SYSTEM Kn,m Cn,m Cn,m (4x/k46)n,m (1µ124x)n,m PART OF SCALING FACTORS	5 9 18 . 17 25 33 41 49 ST CIAL CONNECTION CARDS O	5 0 18 17 25 35 41 40 57 CIAL CONNECTION CARDS ON M SYSTEM Kn,m Cn,m, (AX/KAC)n,m (Lµ2 dx)n,m PART OF SCALING FACTORS 1 1.0 1.0 1.0 1.0 1.0 1.00 6-9	5 9 18 17 25 35 41 40 57 SIAL CONNECTION CARDS ON MI SYSTEM Kn,m Cn,m Cn,m Cn,m (4x/kAG)n,m (1µ24x)n,m PART OF SCALING FACTORS 1 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.	5 9 18 17 25 33 41 40 57	SPECIAL CONNECTION CARDS SPECIAL CALING FACTORS SPECIAL	S S S S S S S S S S	5 0 18 17 25 35 4 40 57 57 57 57 57 57 57 5	5 0 18 17 25 35 4 40 57 57 57 57 57 57 57 5	5 9 18 17 25 35 41 40 57	SPECIAL CONNECTION CARDS SPECIAL CONNECTION CARDS OOS! N M SYSTEM Kn,m Cn,m Cn,m (4x/kac)n,m (1x/2 dx)n,m	SPECIAL CONNECTION CARDS SPECIAL CONNECTION CARDS THEAL PART OF SCALING FACTORS COGSI AMAGINARY PART OF SCALING FACTORS COGSI COG	SPECIAL CONNECTION CAPDS SPECIAL CAPDS SPECI	SPECIAL CONNECTION CARDS REAL PART OF SCALING FACTORS OOS1 NAGINARY PART OF SCALING FACTORS PARAMETER VALUES - UNSCALED OOS3 O	5 0 18 17 25 33 41 40 57	5	5 0 18 17 25 33 41 40 57	SPECIAL CONNECTION CARDS SYSTEM Kn,m Cn,m Cn,m Cn,m (AX/AQ),n,m (Lyzdx)n,m Cyzdx)n,m Cyzdx)n,m Cyzdx)n,m Cyzdx)n,m Cyzdx n,m Cyzdx n,m

理論はなるのかない カンガニ

With the Art of the State of th

•

		ž,	П	\Box		1	1		\Box				1	\Box	\bot	\Box		1	_[1	\dashv	\Box			\Box	\downarrow	\exists
L.	SHEET LE OF.	65	ď		0,-	0																					
DATE	<u> </u>	57	(IMZ DX),n+1			2591.						·														-	
,	LABEL BYO	49	(AX/KAG)m.nm		-9984 E-9	99 84 E-9			040E-9	040 E-9												٠					
PROGRAMMER	- 1		(4x)n,n+1	•	12.	7																					
PROG	PHASE		(4x/e1)n		999 E-12	.998 : 6-12	·		040 E-12	040 E -12																	
AT 2		**	ATER		002591								•														
FORMAT	7	22	စ	TORS	.002591	185500.		S FACTORS			•	TED					·										
DATA	cd	CARDS	YSTEM	LING FA	. /	6		OF SCALING				- UNSCALED						·									
6880		DATA	END	SC SC				PART O				VALUES															
TITLE	EM NO	SECTION DATA CARDS	SECTION	REAL PART OF SCALING FACTORS	00410000	00410000	00410000	١.	00420000	00420000	00420000	PARAMETER	0043	0043	0043	0043	0043	0043	0043	0043	0043	0043	0043	0043	0043	0043	0045
	<u> </u>	 	<u></u>	<u> </u>	ĿΞ	12	<u> </u>	<u> </u>	۷			L	L	42		ــــــــــــــــــــــــــــــــــــــ	J	L		L		4		***************************************			

And Andrew Control		£																	1			I	
	DATE			1 dx)n,m					-			1		-								-	
	CLE OFFEE TABLE	57.		(4x/KAG)n, m (Ixz dx)n, m		.9984 € 9	9984 €-9			6-9060-	040 E-9												
	PROGRAMMER	41		ΔX _{n, m}		/2	7									<u>/</u>							
	27	35		Ch.m/ks		1.			<u> </u>														
	FORMAT	25		J. Ca. B		1.	-	_	ORS														
	258 20	,	000	X,	TORS	1 1.		_	SCALING FACTO	,	3		UNSCALED										
٠.	BRC	51 6		CONNECTION CARDS	OF SCALING F				PART OF				- 1										
	TITLE &	ks		SPECIAL CO	١.	205	003i	005!	MASINARY	7500 -43	0052	2500	PAZAVETER VALUES	2033	0053	. 5500	2059	1 2000	0033	0052	0053	6500	

PROBLEM NO. CA.	12 83					PHASE	35	PHASELABEL [F	टरङ विभव	SHEET 12	_ of
	•										
RUN TITLE CARD											
C000000 (62 H 44											
DATA CONTROL CARD	etc.										
20 54 50 14 50 01 10 000	42 02 5	1 102 52	25 27	- F	* × ×	Z 2	4	\$ 47 49 51 58	19 65 15 55	10 %	-
CASE TITLE CARD											
	21	Simil	ier To	Cose	67		W.Th .	Special Da	Damping - L	(11-255)	
TOPTION CONTROL CARD.											
240 .cc	2 003	094	0PS	940	0P7	000	640	OPIO			
2020000	- -	_ ~	15	67	<u>*</u>	37	4	45			
ED'T CONTROL CARD											
0021200											
rg.	Ţi	17	57	62							
SGENERAL DATA CARD						ĺ					1
 		(sa) ² თ	(Sd) (M∇	(b2)							
0200						•					
eg.	! **:		25						•		
SYSTEMS DATA CARDS											
SYSTEMS RADIUS	INITIAL	77									
003!											1
1003	4										

		•							
PROBLEM NO.		Coce	- 21		PHASE		LABEL - KING-	אונב_	ET 18 OF-
SECTION DATA CARDS	DATA .	SARO,			Ħ		67	25	
SECTION	END	STEM	MASS	WATER	(4x/g1)n	1+4,0(x4)	KAG)		ď
h-	OF SCA	LING F	AC						
00410000		1000	18-2600 1000	1655001	.9414 E-12	12.	6-3 4/48.		7.0
00410000		3	.002591		.4414 . E-12	, ,	. 4414 E-9		1.0
00410000									
	PART O	OF SCAL	SCALING FACTORS						
00420000		1000		·	235 E-12		P-3766		
00420000		3			- 135 8-12		235 E-9		
00420000									
PARAMETER	VALUES		- UNSCALED					÷	
0043					·				
0043									
0043									
0043									
0043									
0043		·							
0043									
0043									
0043	٠								
0043				•					
0043									
.0043									
0043			·						
0043									
	L								

TITLE	TITLE 68RC PROBLEM NO.		DATA	FORMAT 21	MAT 3		PROGRAMMER	LABEL BYIO 211		DATE	
le (٥	£)	۲، ۰	25		3.5	4	8	57	65	£
	٠.										
SPECIAL		LOILO	CONNECTION CARDS	·							
	. 1 🏎	S C	SYSTEM	Ka, a	Ca,#	Cn.m/ko	ΔX _{n, m}	(2x/KAG)n, m (IMZ DX)n, m	(IMZ DX)	٤,	
REAL P.	REAL PART OF SC	CALING	SCALING FACTORS	S							
1500		7	1000				12	P-3 4149.	2		
980		d	2000				7	. 9414 E-9			
005		_									-
T IMAGINARY	VARY PART	- 1	OF SCALING FACT	FACTORS							-
0052		0	/900					-235 E-9			
2500		9	6000					435 E-9			
2300						•					\dashv
PARAM	PARAMETER VALUES		- UNSCALED	٥							
2033											-
6500	-	-									-
0053											\dashv
500										-	-
6553											+
0033									·		-
0053		-									\dashv
0053		-									
0053											-
0053											

TITLE GARC.	DATA 22	FURMAT	PROGRAMMER PHASE		इपित कार	DATE	1 1
•							
RUN TITLE CARD							$\Gamma \rightarrow$
C00000(62 H 4 A A							
DATA CONTROL CARD							\prod
100019/ 10102 4/ 02/42	2/1/2/19	12 2 2 20 55 85	35 37 39 41 4	43 45 47 43 51 58	19 65 77 58	17 62 75 80	
CASE TITLE CARD							
2507	N 25 K	Messes & Pres	a Sporte m	incressed stif	STIFF HELL BETWEEN	en systems	[.].
SPION CONTROL CARD	-						
240 · ec	003 004	0PS 0P6	OP7 OP8 0P9	OP O			
5000000	27	25 29	37 41	45			
EDIT CONTROL CARD	-			•			
00051200	- 2:	62 53					
GENERAL DATA CARD			,				
, , ,	(Sd2) ² က	∆W (CP\$)					
- L O O O O		25					
SYSTEMS DATA CAPDS							
	INITIAL J				+		
2031							1
1003							7

ĺ		
١	Ł	
į	ľ	
7	ŧ	

SECTION DATA CARDS 5 9 13 17 , 18 5 9 13 17 , 19 14 15 17 , 20410000 00410000 00410000 00420000 00420000 00420000 0043 0043		WATER WATER INERTIA OC2591	PHASE (AY/EI) 0.990 E - 12 0.990 E - 12 - 099 E - 12	/2/x-1	49 57 49 57 (AX/kAG) _{m,n} (Juz Ax) _{m,n} , 0.990 E-9 0.990 E-9 099 E-9	345 (12 241)	65 73 73 (1.0 (1.0 (1.0 (1.0 (1.0 (1.0 (1.0 (1.0	
SECTION DATA CARE 5 9 13 5 9 13 13 14 0 14 SECTION END 3YSTE REAL PART OF SCALING DO410000 DO410000 DO420000		WATER WATER INERTA	490 E -12 990 E -12 999 E -12	(Ax) _{n,n+1}	0.990 E-9 0.990 E-9099 E-9		م. م. ا	m
Section END 3YSTE		WATER WATER OC 25 91	990 E-12	(Ax) _{0,0+1} /2.	(x/kAS)mnn 0.990 E-9 0.990 E-9 099 E-9		Q',0	
Control Cont	91 1 1 91 1 F1 1 1 1 1 1 1		0.990 E-12 0.990 E-12 -099 E-12	/2. /. /. /. /. /. /. /. /. /. /. /. /. /.	0.990 E-9 0.990 E-9 099 E-9		0.7	
SCALING			0. 990 E -12 0. 990 E -12 - 099 E -12	13.	0.990 E-9 0.990 E-9 099 E-9		0.7	
WALUES	OF 435		0.990 E -11 0.990 E -11	12.	0.990 E-9 0.990 E-9 099 E-9		0.7	
PART OF WALLES	OC 435	S	0.990 E-11	7	0.990E-9		0:7	
WALUES	ING FACT	% & & & & & & & & & & & & & & & & & & &	099 E -13					
VALUES	ING FACT	88	099 E -13					
VALUES	2 3 NSCALED		- 099 E - 12					
VALUES	3 NSCALED		- 089 E - 12		099E-9			TII
VALUES	NSCALED							777
VALUES	NSCALED							1
						·		-
0043 0043 0043 0043								T
0043								T
0043								T
0043								T
0043	•							
0043								
0043								
0043								
0043		•						T
0043				•				
0043								
0043								
0043								
0043								٦

一日 このはないないのはない

				•	•				•
PROBLEM NO.	0.	Care	22	FORMAT	PROGRA	NAMER	LABEL BYND 222	11	DATESHEETSF
k i	۰		۲.	25	35	4	8	. 27	65
SPECIAL CO	NNECTI	CONNECTION CARDS	ນຣ						
ב	٣	SYSTEM	Ka, m	Cn.m	Cn.m/ku	ΔX _{n, m}	(4×/KAG)nm	(I µ z 4x) n, m	
REAL PART C	OF SCALI	SCALING FACTORS	TORS						-
1500	٥	1 000	-	1.	-	12.	0.990 E-9	٥.	
		0003					0.990 6-9	ò	
1500									
INARY	PART C	F SCAL	OF SCALING FACTORS						
252		1000					099 K-9		
0052		6000					099 E-9		
2500									
PAZAMETER VALUES	VALUES	- UNSCALED	CALED						
0033 0049	1000 0,500 0000	2000	700,000.						
50053	55	7	2 /20 0000.						
0053						<i></i>			
5059									
6500	_								
0053									
0055									
6500									
0053	_								
0053									

•

これのことのできることがあるないからない しょうしゃ ちっちゅう

TITLE PROBLEM NO.	Case	DATA 23	7	FORMAT !		PROGRAMMER PHASE	- LABEL SIVID		DATE SHEET 23	o.
	·		,	,		·				
RUN TITLE CARD	CARD									
										1
DATA CONTROL NO TYPE	TROL CARD									1 +
70000 s	1 6 55 20 07	17 19 21 25	15 T 19	33	35 37 39	41 43 45	47 49 51 55	55 77 59 61	63 65 64 64	-
CASE TITLE CARD		26 66	96 M	a v	100		40 7 6	9	be Tween Su	Systems
000000	.00i000(62 HAA Legs R	-	1 !	dox 3	27.77			. 1	1 1	
OPTION CO	OPTION CONTROL CARD		1							
	290 ICC	0P5 0P4	200	OP6 0P7	7 098	0 640	OPIO			
2020000	F 6	17 21	13 23	33	- I'm	45				
EDIT CONTROL CARD	POL CARD									
00210000							•			I
	Ę ć	12 71	25	2						ł
GENERAL	DATA CARD									1
3.5.	×2,5 ω, (CPS)	က ² (cPS)	(CPS) (\D	(50						
osoo 5	ģ	Į.	25							
20,000	24240 4740									
SYS	SYSTEMS RADIUS	INITIAL J								
1500										

	73				-			-				+				_	-					
24	63																					
DATE -				(Iµ1 Ax)n,m																		
ריז	<i>S</i>			-			-	_		-	_	-	ļ	-			_			_	-	-
EL K W L.				(4x/kAC)n.m																		
ER LABEL	&			ΔXn, m																,		
PROGRAMMER PHASE	4			-						_	_			_		4						
W 9	5			Cn.m/ks																		
FORMAT	35			C _n .a																		
	25			-					RS S			_			-							
23			ď	Ka, 8	JRS				OF SCALING FACTORS				LED	100 000	200 000.							
GBRC 1:	15 - 17		CONNECTION CABOS	SYSTEM	SCALING FACTORS				F SCALIN				- UNSCALED									
1 7 1	0		VITOSINAC	٤	OF SCALI		_		PART				PAZAVETER VALUES	2037 0049 005 6 0002	9.5			-				_
TITLE PROBLEM NO.	ks				PART				NARY	-		- 2	NAVETER	700	3 524		- · · ·		ye,	3		
TITLE			400		REAL	705/	00	005	Y	C352	2500	6052	PA2	003	0253	00.53	0053	.0033	0053	0053	9003	0053

the state of the s

ווות	GBEC -1			PROGRAMMER DATE	
LEM	CASE 24	- Conesco	Prop. (c. cr.	- LABEL 8MQ -277-	er of
	A Bou	ز∬			
RUN TITLE CARD.		865 (H)855	Conste	VerTical Bending	
DATA CONTROL	TROL CARD	į			
100000	5 20 pt 32 01	3 12 94 7:	R 18 19 73 23	35 37 39 41 43 45 47 48 51 55 55 57 59 61 65	17 65 70 30
CASE TITLE CARD	E CARD				
001000 (62 H AA	2 H A A	35 SECT	CTIONS + PROP	SYSTEM SINE MODE T	
اا	OPTION CONTROL CARD				
	390 190	0P5 0P4	0PS 0P6 (OP7 OP8 OP9 OPIO	
20200000	5	17	15 19 53	3 37 41 45	
EDIT CONTROL CARD.	ROL CARD				
00210000			26 20		
	Section CARD	(\$43)20	(cPS)		
0030	6	12-	25		
SYSTEMS	SYSTEMS DATA CARDS				
SYS	SYSTEMS RADIUS	INITIAL J			+
0031					
1600					

SECTION E SECTION E SECTION OO44 6001		CASE 24	Conesco		Š			27] SHEET.	ET OF	
SECTIO 5 5 0044 6	C				¥	PHASE	LABEL BYO			1
39E 304W &	CTION END	11	VALUES - UN	UNSCALED						
0044	CTION END	1	۱۲ ،	25	33	. =	49	57	65	2
304W &		STEM	MASS	WATER INERTIA	(0%/E1)n	(AX), n+1	(0x/KA6), n+1	(IAZdx)A, B+1	ď	
	(1000									
1									-	
10044						·				
0049										
0049										
004		Seme	A.	123 35P	STOD THE	91				
					·					
900								·		
6700		•								
	0000									
0043										
1 _ 1	2500	600	8220		6 41.5	52,125		57.0	1.0	
004% 00	9500	00 B	21300		7 5,5				0.0	
0043		•								
0043							·			
0043										
0043										
8043										
0043										
0043										
0043										1
0043										T
0043										_

TITLE	9	(- 2484)	- 1			PROG	PROGRAMMER		DATE		
PROBL	PROBLEM NO.	CASE	PE 54	Conneco		PHASE		LABEL -	SHEET.		. 1
SPECIAL	A	CONNECTIONS 9 B	٠,	PARAMETER VALUES		£	-	6#	53. 55		B
	د	E	STEN	Kn,m	Cn, m	C^m/m	(ax)n,m	(OXKAG),,,	(Iµ2 0x)n,m		
0053	oom	005.0	2000	2	2						
0053											
0053	200	5500	2000	000185							
0053											T
0053					***					.	7
9053											
8											7
88											_
000											
56 -54											
0003											T
0023											
0053					• فقن						T
002					۰. س						7
0053	•										
0003	 .										٦
800											7
0053											7
5003					٠			`			T
0033				4							
3053											П
0033											T
CC 53											T
003								·			\neg

ŧ.

The state of

											<u> </u>
PROBL	PROBLEM NO.	5	SE 25	9	nesco	# # # # # # # # # # # # # # # # # # #	PKOSKAMIMEK	LABEL 840	217 SHEET	ET OF	1 1
SEC	SECTION F	PARAMETER	H	VALUES - UP	UNSCALED						
	5	6		, 41	25	33	٠.	49	57	65	77
	SECTION	END CONDN.	CONDN. SYSTEM	MASS	WATER	$(\omega / \epsilon_1)_n$	(AX),, n+1	(0x/KA6), n+1	(IM 2 0x)	$\sigma_{\!c}$	
0043	1500		1000	22510	42800	4.773				0	
0043	PS OO	1000 7000	1000	33 420	11 200	SI				1.0	
0043											
0043								•			
0043											
0043					MOOI FICA	7107	OF CASE	. 92			
0043											
0043											
0043					+						
0043						•					
0043											
0043											
0043			•		-						
0043											
0043											
0043											
0043											
0043											
0043											
0043											
0043											
0043	_										

1-12 C-880-1	PROGRAMMER	
PROBLEM HO. CASE 26	Conesco PHASE LARE TELE 277	, k
35 CONC.	Masses + Propulsion 34s	5
Last Verlice	For	
RUN TITLE CARD		
	SS. R. N. S. T. Conosee Varlich Banding	
DATA CONTROL CADD		
NO TV	E etc.	
\$ 6 5 01 10 CGOC	5 25 25 25 26 36 35 35 37 39 41 45 45 47 48 51 55 55 57 39 41 45 45 47 48 51 55 55	3
CASE TITLE CARD	I	1
	35 Masses + Prop. 845 lam Unit Varlies F at Station 51 (S	(STEEN)
OPTION CONTROL CARD		
240 cc	P2 OP3 OP4 OP5 OP6 OP7 OP8 OP9 OP10	
2020000		
1		
EDIT CONTROL CARD		
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 2! 29	
GENERAL DATA CARD		
) ω ₂ (cPs) Δω (cPs)	
e.	.1	
SYSTEMS DATA CARDS		
SYSTEMS RADIUS	INITIAL J	
1500		
1600		

				•				
(BRC- 1	-			PRO	PROGRAMMER		DATE	
PROBLEM NO. C MAE	20 20	Conesco		PHASE	1	LABEL BNO -	SHEET.	.T OF
NO	1)	ALUES -	UNSCALED	***		70	, 15	, r
SECTION END	END SVETEN	MASS	MTER	(4x/E1)	(AX), 11	X/KAGL AT	Luz dx)a. nei	9
IS OP	0.80	تہ	42.600					0.1
2500	8	220		641.5	55.125		59.0	0.0
					5000			
				1	, v	メ		
				200000	11,000			
		•	401120	109 1 4				
		Nor	110	777	٤.			
	_		È	المهرية				
		•	THE .				·	
		20W	30 113					
		3	, 00					
		1	اره					
0043								
0043								
0043								
0043								
8043			•					
0043								
0043								
0043								
0043								
2043								

一般の一般のできないというないというないと

7171 6					000	DOCEDANAMED	REED	TAG	DATE 15 NOV 62	
PROBLEM NO.		Case	27		PHASE		0 H8	277 SHEET	ET 3 OF 4	7
SECTI	SECTION DATA CARDS	CARD.	١.,	y e			, , , , , , , , , , , , , , , , , , ,	23	. 97	K
7		1	ⅎL	WATER			17.17	(2, 1, 1)		T
NO.		CONDN. SYSTEM	MASS	INERTA	("/EI)n	1+4,0(x4)	(-7kA6)n.nm	1+4 Wx 72 2 mm	75	
REAL PART	Ą	ALING F	SCALING FACTORS							П
00410000	ō	1000	165600.	18 6600.	0.990 E-1	/3	0.990 E-9	25.91	0.,	
00410000	Q	6000		,	, ,	,	,		1.0	
00410000	õ	6000	165600		0.890	0./		2591	7.0	
IMAGINARY	PART	OF SCALING	LING FACTORS							
00420000	ŏ	1000			-C. 099 E-L		-6.099E-9			
00420000	οί	0003			-0.099E-1					T
00420000	Q									_1
- PARAMETER	ER WALDES	i	- UNSCALED					·		
\$ 0043600 1	1000 10	1000/	75.00	1,350	/0	4.5	11.4			T
0043	3	'	65700	47800	126	3	53.9			
0043	3	<i>'</i>	157750	115 700	1.39	6	40.8			
0043	4	/		206 DOC	1.363	6	21.6			
0043	2		292 700	347 000	0.3/7	15	19.3			T
0043	7	7	1 860 475	425 000	0.278	/0	13.3			T
0043	2	7	425 000	345 000	0.161	7	6.73			1
0043	సం	1	341 250	355 000	0 095	,	8.35			T
0043	9	'	387 000	427 00 C	0.133	11	13.5			T
0043 00	0/00	/	299 45€	576 000	0.134	70	0.01			
0043	11	'	316 800	471 000	0.0843	Ġ,	6145			
0043	/2	/	050 692 1		0.072	9	2.30			
0043	13		1 517 750	563 000	01079	0/	8.15			\neg
0043	1,4		1 5.83 450	000 100	0.0834	70	1.10			T
0043	/3		1 544 045	585,000	1180.0	6	7.65			٦
:				•						

7171 6						DAG	PROGRAMMER	REED	DATE	DATE 15' NOV 42
PROBL	PROBLEM NO.	7	Gase	22		PH/	'	回	SHEET 3	1 3 OF 4
SEC	SECTION	PARAMETER	1	VALUES - UN	UNSCALED					
	5	6	11	ن ۲	25	3}	4	49	57 65	E.
	SECTION	CONDA	CONDN. SYSTEM	MASS	WATER	υ(1 3/ χσ)	(AX),,n+1	(ax/kA6),mel	(IMZ DX)n, m+1	σe
0043	0016		1000	534 750	560 000	0.0700	9	4 90		
0043	17		/	579500	3.81 000	60000	70	7.64		-
0043			/	813 450	745 000	0.0857	//	10.80		
0043	51		/	445 000	930 000	0.1010	77	12.2		~
0043	30		/	000 976	868 000	00010	13	9.3		
0043	16		/	156000	277 000	4660.0	7.3	2.01		
0043	22		'	1040300	953 000	0.1217	31	15.2		
0043	13		1	13.31.211	1150 000	8/2.0	22	26.3		
0043	11		7		334 OOK	0.216	6	9.01		
0043	35		7	270 600	330000	0.153	γ.	16.9		
0043	77		/	463 400	456 000	0.347	7/	22.2		
0043	22		7	- 57	623000	6.353	15	18.6		
0043	15		′	440 420	000 L 97	0.422	00	34.2		
0043	1.1		1	544 500	434000	0.561	77	23.2		
0043			,	426500	22300 c	6/5.0	6	22.0		
0043	3,		`	116 750	151000	0.632	3	23.9		
0043	3.		1	10/050	91,800	0.773	یر	17.6		
0043	33		1	25 300	00657	1.063	2,42	30.1		
0043	34		1	44300	45.600	1.794	ò	ò		
0043	36			475 770	41800	4.773	<u>م</u> ا	120.		
0043	3.7	10001		75420	11 200	15. —			-	
0043	35		0003	13600	·	1214.				
0043		J	3	6.10		641.5	55, 125		5.9	
843	38		2			7.5.5	ò			07

TITLE PROBLEM NO.	N.O.	Cese	12 27		PROGRA PHASE	MMER	REED LABEL BYIG	דנג	DATE <i>LS. NO'V & A</i> SHEET <u>4</u> OF <u>4</u>	34
k ·	Ó		Γ.	25	35	14		57	65	Ŀ
SPECIAL	CONNECTION CARDS	A) NOI	RDS							
1	٤	SYSTEM	X Ks, 3	Cn.m	Cn.m/co	ΔX _{n, m}	(4×/KAG)n,m	(Iµ1 4x)n,m		
REAL PART	ঠ	SCALING FACTORS								T.
205/		1000	0.7	7.0	7.0	13.0	0.990 E-9	9		
900		6000		7.0	07			_		
05!		Esoo		. 0.7	1.0	0./.				1.
-62	ZY PART	OF	SCALING FACTORS							
2352		1000					-6,099 E-	E-9		
0.052										\perp
6052					-		-			4
PARAVETER VALUES	ER VALUE		- UNSCALED							.
2537 34	35		2 234 000						-	
0053	36 36	2000 36								4
		1000 1				1.58	20,4			_ -
	-		2	7.0						
	31 35		2			149.875	1	_		-
] :	,,		3			196.5		.		
<u>.</u> .	-	_								4
6500								1		_
6500.					-					- -
6500										4

The state of the s

.

大きな かんしょう かんしょう

ECTION DATA CARDS STATEMENT OF THE PROPERTY AND THE PROP						OBO	DROCE ANAMER PEED	£0	DAT	DATE 15 NOV 42
DATA CARDS 3.	Progress and	Cos	ι		VESCO	Ä	, N	7 70		ET 2 OF Z
DATA CARDS 35	PROBLEM NO.	34.0 18	ı ı	# B	ex laevila			Sina		
ENG. 357EM MASS WATER 39/END. 40/END. 40/END	SECTION	DATA	CARDS							
COOL OCO 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2			7	. 52				57	H
CCO	SECTION NO.	END GNON.	SYSTEM	1	WATER INERTIA	ν(1 3 / ₇₇)	1+4,0(x4)	(4×/kAG), n+1	(ZAZ ZX), n+1	σ_{ϵ}
COO CO CO CO CO CO CO C	PART	F SCAL	ING F	ACTORS						
MULES - UNSCALED CCC7 OCO 1 75 00 435 0 10 4.5 1/4 A5 1/2 CP	00410000		1 005	9 cc.00.	165600.	0.990 E-13	12,	0.990 €-9	2541	0.7
MAUNES - UNSCALED COCCY OCCY 75'00 GS5'0 10 F.5' 1/4 S5' COCCY 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' COCCY OCCY 75'00 GS5'0 10 F.5' 10 F.5' 10 F.5' COCCY 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' COCCY 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' COCCY 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' COCCY 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' COCCY 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' COCCY 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' COCCY 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' COCCY 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' COCCY 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' COCCY 10 F.5' COCCY 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5' 10 F.5'	00410000		6000				7:0		1652	0'/
WALLES - UNSCALED COCCI OCO 1 7500	00410000		5000			1990E-12	1.0	.9906-9	18.56	1.0
WALKS - UNSCALED CCCT OCO 1 7500 C350 10 4.5 //4 CCCT OCO 1 7500 C350 10 4.5 //4 1 7 7 7500 C350 10 4.5 //4 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	IMAGINARY P	Ι.	र्डू	ING FACTORS						
WILES - UNSCALED COCY OCO 1 75 00 635 0 10 7.5 //4 COCY OCO 1 75 00 635 0 10 7.5 //4 COCY OCO 1 75 00 635 0 10 7.5 //4 COCY OCO 1 75 00 635 0 10 7.5 //4 COCY OCO 1 75 00 635 0 10 7.5 //4 COCY OCO 1 75 00 7.4 //4 COCY OC	00420000		0000			099 E-12	•	099 €-9		
ALUES - UNSCALED CCC7 OCC 1 7500	00420000									
WALDES - UNSCALED CCC7 OCC0 75'00 635'0 10 4:5' 1/4 1	00420000									
2007 000 1500 10	1	VALUES	SNO	CALED					·	
25 A 27 A 28	_		1000	25.0	6350	0/	4.5	114	25	
2 1 2 PMC CT 2 2 PMC 2 PMC CT 2 P	$\overline{}$	1	`	_					87.9	
2			-						408	
2 Print C C C C C C C C C C C C C C C C C C C			`			5.5			1330	
2			~			K. 7			4450	
2			_		L CA WA				2012	
9			1						2195	
7 1 1			'		ら				2665	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			'						4640	
1.2 1 2.7 1 2	100								4180	
1, 2, 1	0043		/						430	
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7										
7 7 77	•		′	·					0627	
`			/						905.0	
•	`		\							

280	PROBLEM NO.						PHASE	LABEL SHID SIL		SEET - G-1	
SE	SECTION	PARAMETER		ALUES -	UNSCALED	ï				•	
	SECTION	FIND	END SYSTEM	MASS	WATER	(2x/E1)	(AX), n. n.	(0x/(AG)	(Iu. 0x).	2	r.
0043			1000								
0043			,						0000/		
0043	5 22		7			,			14/20		
0043	5 23		,				٦.		000 91		
0043	44. 8		1			9	L		12380		
0043	5 25	-	,			رهی			11 290		
0043			7			5.5					
0043	96		7		3						
0043	32		7		SAM				3000		
T 0043	33		1						1378		
	34										-
00			/								
9043	35. 25										
9043	5 43	2	7						1050		
0043		3							677		
0043	1 43	, ,	1						390		
0043	3%		/						378		
9043	47	2	/								
8	49		7		•						
0043	57			•							
9043		54 6002	7								
0043	5 13		2								
0043			2								
843	2					• •					

PROBLEM NO. SECTION PARAMETER VALUES - UNSCALED SO43	2000
SECTION PARAMETER VALUES - UNSCALED 339 41 SECTION END. SYSTEM MASS WATER (AXE) (AXE	MEEU
TION PARAMETER VALUES - UNSCALED 5 9 18 7 25 8ectrow [END. SYSTEM] MASS WATERITA (LOYE1) (LOX), 17+1 10 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PHASE LABEL BY OF 2
\$ 9 th 17 \(\) 25 \$ 19 th 1000 \$ 100	
Section System MASS Wateria (200 Cax) Mass Wateria (200 Cax) Mass Mas	
2018 1000 2 19 2 2 21 2 2 21 2 2 22 32 2 40 2 3 50 3 3 3 2 50 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3)n (AX)n
10 2 2 2 2 2 3 3 4 4 2 2 2 4 4 4 2 2 2 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
42 2 5 Print 43 42 2 5 Print 44 5 5 5 Print 44 5	
37 2 2 3 3 3 3 4 4 8 2 3 4 4 8 2 3 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
31 2 2 46 46 40 40 40 40 40 40 40 40 40 40 40 40 40	-
32 2 2 5 RW 40 40 2 2 5 RW 5 C 8 C 8	
3.9 2 SAM F T T T T T T T T T T T T T T T T T T	
39 2 S N	
46 2 2 49 2 49 5 49 5 49 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	· · · · · · · · · · · · · · · · · · ·
41 2 42 2 48 2 52 2 56 3 56 3 57 3	>
42 2 48 2 52 2 56 3 56 3 56 3	
43 2 53 2 56 3 57 3 56 3	
52 2 56 2 56 3 56 3	
56 3 57 3 56 3 56 3	
56 35 36 36	
3	
3	29.0
	Q'I
0043	
0043	
0043	
0043	
0043	

S	TITLE					PROC	PROGRAMMER REED	REED		DATE 15 NOV 42	3
SPECIAL CONNECTION CARDS CAMPOSITION CARDS The matter of scaling factors 10.051 10.052 10.052 10.052 10.052 10.053 10	PROBLEM NO					PHA		LISE CHAN JOAN	ŀ	SHEET SOF Z	7
SPECIAL CONNECTION CAPDS SPECIAL CONNECTION CAPDS REAL PART OF SCALING FACTORS 20051 10061 20052 20052 20052 20053 20052 20053 2005			•	2;	25	35	4	8	. 15	£9	£
SPECIAL CONNECTION CARDS REAL PART OF SCALING FACTORS DOS: 10001 100											
SPECIAL CONNECTION CARDS D											
SPECIAL CONNECTION CARDS D											
SPECIAL CONNECTION CAPDS N M SVSTEM Kn,m Cn,m Cn,m AXn,m N M SVSTEM Kn,m Cn,m AXn,m N M SVSTEM Kn,m Cn,m AXn,m N SVSTEM Kn,m Cn,m AXn,m N S M M M M M N S M M M M N S M M M M N S M M M M N S M M M M N S M M M N M M M M M N M M M M N M M M M N M M M N M M M N M M M N M M M N M M M N M M N M M N M M N M M N M N M M N M M N											
N M SYSTEM Kn,m Cn,m Cn,m AXn,m	ı	MECTIC		205				•	,		-
NEAL PART OF SCALING FACTORS	C	٤	SYSTEM		Gn.#	Cn.m/ks	ΔX _{n, m}	(4×/kA6)nm	(IMZ AX)n,m	¥	
DOSI 000 / 1.0 1.6 1.2 DOGI 2 1.0 1.0 1.0 DOSI 3 1.0 1.0 1.0 1.0 DOSI 3 1.0	PART		NG FAC	:rogs							
GINARY PART OF SCALING FACTORS AVETER VALUES - UNSCALED COC12 DOC3 COO 2 12 19 2 2 12 19 2 2 24 30 3 3 3 3 3	1800		1000	7.0	1.0	7.0	13.	0.990 E-9	L		
SINARY PART OF SCALING FACTORS 0001	jg Og		2	0.7	1.0	. 0.1		0,	1652		
SINARY PART OF SCALING FACTORS OO 1	0051		3			7.0	7	0.990E-9	25.91		
OO(2) COO(3) OO(2) COO(3) COO(3) 12	SINARY										
NAETER VALUES - UNSCALED OO 1	3352		1000					-0.099 E-9	6		}
METER VALUES - UNSCALED 00/12 00/3 000 2 12 14 2 12 19 2 26 38 2 26 38 2 29 31 3	1052		6000					019 E-9			∤
00013 0003 - UNSCALED 00013 0000 2 12 14 2 17 19 2 26 30 2 26 30 3	2500										-
12 14 2 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PAZAMETER	VALUES		CALED							
12 14 3 17 19 2 26 38 2 39 31 2	0033 0017	00/3	6002								_
12 12 2 26 39 2 26 39 3 29 31 2	12	14	8								-
26 28 2 26 38 2 29 30 2											4
26 39 2 3 mc		6/									
26 38 3		22									_
29 30 2						_					4
29 31					S						4
7.											
391 371	÷	35	7								4
0053 32 37 3											

変える こうかっしゅ

TITLE						b Ad	PROGRAMMER	REED		DATE 15 NOY 62	7
PROB	PROBLEM NO.					£	PHASE	<u> </u>		SHEET_6_0F.7_	
SPE		CONNECTIONS	٠,	RAMETER	VALUES						
	2	9	5		25	. 33	41	68	-57	. 65	×
	ב	Ε	SYSTEM	Κ _{0,} 3	Cu, A	Cn,m/w	(4X)n,m	(45KAG),,m	(I42 0x)n.m		
0053	0038	0039	2 000			-					
0053	38	40	2								
0053	38	777	7								
0053	34	42	2								
0023	47	4.5	2							•	
0003	15	52	2								
6000	51		2								
983	71	15	/						7470		
0053	//		/						7680		
	26		1						13400		
-6500 -650	29		1			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			14430		
	34		7			3			4030		
0033					5	58 A5			25.40		
0053			7	•		1			22.20		
0053	42	1 49	7						216.6		
0003	49	12.	,						117		
0033	51	54	,						141.8		
0053	49	9 50	2								
0053	57	2,	2								
0053	50	55	3								
0053	/3		2								
0033	14	Į.	7								
CO 53	1 52	2	7								
003			7								

	PROBLEM NO.					PHASE		19	112	SHEET 7 0F 2	7
PROBL											
SPECIAL	IAL CON	ECT	∥ • •	PARAMETER VALUES				70		.	. #
	2	E	SYSTEM	X 5.8	Com	Cn, m, 120	(4X)n,m	2×K46)	(42 0x)n,m		\
0053	005.6		2000		200	צ ו	C1 328				$\sqcup \downarrow$
0053	46	50									
000											_
0053											
60033											-4
3053											
0003											
0053											
8											
, cos3											_
1 0053											
0003		•									
6003											-4
0053											
9053	•										∤
6000											
6003											
0053							1				
5053		5									
633											
3055											
0023											
CC 53											
											•

- Reed, F. E. and Bradshaw, R. T.
 Ship Hull Vibrations 2 The Distribution of Exciting Forces Generated by Propellers
 CONESCO Report No. F-101-2 June 1960
- Reed, F. E. and Bradshaw, R. T.
 Ship Hull Vibrations 3 Estimation of Amplitude of Vibration of USS GEORGE WASHINGTON SSB(N) 598
 CONESCO Report No. F-105-1 June 1961
- Gesswein, B. H. and Moses, F. Calculated Modes and Frequencies of Hull Vibration of USS GEORGE WASHINGTON SSB(N) 598 DTMB Report 1464 Nov. 1960
- Reed, F. E.
 Ship Hull Vibrations 4 The Forces and Moments Generated by the Propellers on the USS GEORGE WASHINGTON SSB(N) 598 and the USS ETHAN ALLEN SSB(N) 608 CONESCO Report F-111-1 July 1962
- 5. General Dynamics Corp. E. B. Div. Plan 98A21-07 SSB(N) 599 - Weight Distribution - 19 Apr. 1960
- Bovenzi, Frank G.
 Frequencies and Mode Shapes of SSB(N) 599
 Electric Boat Div., General Dynamics Corp. Report C413-61-001 Jan. 13, 1961
- 7. "Detailed Weight Summary" SSB(N) 599
 Electric Boat Div., General Dynamics Corp. July 1, 1960
- Sakolnikoff, I. S. and Sakolnikoff, E. C.,
 Higher Mathematics for Engineers and Physicists
 McGraw Hill, 1934 (pages 407–414)
- 9. Goodman, Theodore R., and Sargent, Theodore P.

 Effect of Body Perturbations on Added Mass With Application to Non-Linear
 Heaving of Ships
 Journ, Ship Research Vol. 4. No. 4 Mar. 1961, p. 22

- Lamb, Horace-Hydrodynamics
 Dover Publications, N. Y. 1945
- Macagno, E. O., and Landweber, L.
 Irrotational Motion of the Liquid Surrounding a Vibrating Ellipsoid of Revolution,
 Journ. Ship Res. June 1958, pp 37–49
- Greenspan, J. E.
 A Shell Type Approach for the Vibration and Acoustic Analysis of Ship and Submarine Hull, J. C. Engineering Research Associates, Tech. Peport No. 1 Contract NOnr - 2862(00)X, May 1960
- Junger, M. C., and Kleinschmidt, K.
 Acoustic Mutual and Self Radiating Impedances for Surface Elements on a Prolate Spheroid and Associated Far Field Sound Pressures, Cambridge Acoustical Associates, Inc., Rep. 6–110–48, Contract NOnr–2739(00).
- Chertock, G.
 Sound Radiation from Prolate Cylinders
 Journ. Acoustical Soc. America July 1961 pg. 871
- 15. Lewis, F. M.
 The Inertia of the Water Surrounding a Vibrating Ship, SNAME Trans.
 Vol. 37 (1929) pp 1–20
- Taylor, J. Lockwood
 Some Hydrodynamic Inertia Coefficients
 Phil. Mag. Series 7 Vol. 9. No. 55 (Jan 1930) pp. 161–183
- 17. Wendel, Karl
 Hydrodynamic Masses and Hydrodynamic Moments of Inertia
 DTMB Transl. 260 (July 1956)
- 18. Weinblum, G.
 Über Hydrodynamische Massen, Schiff und Hafen, V. 3 No. 12 (1951)
 pp 422–425

- Havelock, Sir Thomas H.
 Ship Vibrations: The Virtual Inertia of a Spheroid in Shallow Water Trans. Instn. Nav. Arch. Lond. V. 95 (Jan 1953) pp 1–9
- Landweber, L. and deMacgno, M. D.
 Added Mass of Two-Dimensional Forms Oscillating in a Free Surface
 J. Ship Res. V. 1, No. 2 (Nov. 1957) pp 20-31
- Landweber, L. and Macagno, Matilde.
 Added Mass of a Three-parameter of Two-dimensional Forms Oscillating in a Free Surface, J. Ship Res. V. 2, No. 4 (Mar. 1959)
- 22. Kaplan, P.

 A Study of the Virtual Mass Associated with the Vertical Vibration of Ships in Water, Davidson Lab. Report No. 734 (Dec. 1959)
- Landweber, L. and Macagno, M.
 Added Mass of a Rigid Prolate Spheroid Oscillating Horizontally in a Free Surface, J. Ship Res. V. 3 No. 4 (1960) pp 30–36
- 24. McGoldrick, R. T. and Russo, V. L.
 Hull Vibration Investigation on SS GOPHER MARINER
 Trans. SNAME Vol. 63 1955
- Kennard, E. H.
 Virtual Mass of Ships in Higher Modes of Vibration, Appendix to DTMB
 Report 762, (June 1951)
- Leibowitz, R. C. and Kennard, E. H.
 Theory of Freely Vibrating Non-uniform Beams, Including Methods of Solution and Application to Ships, DTMB Report 1317, May 1961, pp 235–243
- 27. Horvay, G., and I. M. Clausen, Membrane and Bending Analysis of Axisymmetrical Shells, ASME J. A. M., V. 22, pp 25–30 (1955)

- 28. Schade, H. A., Notes on Primary Strength Calculation. SNAME Trans. V. 65, pp. 154–162 (1959)
- 29. Schade, H. A., The Effective Breadth of Stiffened Plating Under Bending Loads, SNAME Trans. V. 59, pp 403–420 (1951)
- Schade, H. A., The Effective Breadth Concept in Ship-Structure Design, SNAME Trans. V. 61, pp 410-424 (1953)
- Lewis, F. M. and Auslaender, J.
 Virtual Inertia of Propellers
 Journ. Ship Res. Vol. 3 No. 4 Mar. 1960 p 37
- Timoshenko, S.
 Theory of Plates and Shells AcGraw-Hill (1940)
- Timoshenko, S. and Goodier, J. N.
 Theory of Elasticity
 McGraw-Hill (1951)

7	. 5
1. Submarines (Nuclear)- Vibration-Mathematical Analysis 2. Propellers (Marine)- 3. Vibration - Analysis 4. GEORGE WASHING- TON (U. S. fleet ballistic- missile submarine, nuclear, SSB(N) 578) 1. Reed, F. E. 11. Cuthill, Elizabeth	1. Submarines (Nuclear)- Vibration-Marhematical Analysis 2. Propellers (Marine)- Vibration 3. Vibration - Analysis 4. GEORGE WASHING- TON (U. S. fleet ballistic- missile submarine, nuclear, SSB(N) 599) 1. Reed, F. E. 11. Curhill, Elizabeth
CONESCO, Inc., Combridge, Mass., Rep. F-III-2 SHIP HULL VIBRATIONS-5, Analysis of Hull Structures as applied to SSB(N) 578 GEORGE WASHINGTON by F. E. Read and E. Cuthill, Mar. 1963, X1 270 p. graphs, tables, refs.(Index No. 5-F013-11-01, Task 1351; Contract NObs 86111) A computer program for determining the natural frequency of a ship hull elastically connected to other elastic systems and to sprung masses and containing concentrated and hysteresis demping sprung masses and containing concentrated and hysteresis demping that represents the SSB(N) 598 GEO. WASHINGTON in detail. The influence upon the hull response to prapeller and hull excitation in the stem of variables such as the rumber of mass points used to represent the hull, the omission of the propulsion sub-system only hull, the inclusion of the manner of inertia of the hull cross-sections, the treatment of water inertias, the treatment of sprung masses and the amount of hysteresis damping in the hull is shown.	CONESCO, Inc., Cambridge, Mass., Rep. F-111-2 SHIP HULL VIBRATIONS-5, Analysis of Hull Structures as applied to \$58(N) 588 GECKGE WASHINGTON by F. E. Read and E. Cuthill, Mar. 1963, XI 270 p. graphs, tables, refs. (Index No. 5-F013-11-01, Task 1351; Contract NObs 86111) A computer program for determining the natural frequency of a ship hull elastically connected to other elastic systems and to sprung masses and containing concentrated and hysteresis damping is developed. This program is applied to the mass-elastic system is developed. This program is applied to the mass-elastic system is developed. The influence upon the hull response to propeller and hule accitation in the stem of variables such as the number of mass points used to represent the hull, the amission of the propulsion sub-system and the primary hull, the inclusion of the mament of inertia of the hull cross-mass and the amount of hysteresis damping in the hull is shown.
1. Submarines (Nuclear)— Vibration-Mathematical Analysis 2. Propellers (Marine)— 3. Vibration — Analysis 4. GEORGE WASHING— TON (U. S. fleet ballistic— missile submarine, nuclear, SSB(N) 598) 1. Reed, F. E. 11. Cuthill, Elizabeth	1. Submarines (Nuclear)— Vibration—Mathematical Analysis 2. Propellers (Marine)— Vibration 3. Vibration 3. Vibration - Analysis 4. GEORGE WASHING— TON (U. S. fleet ballistic— missile submarine, nuclear, SSB(N) 598) 1. Reed, F. E. 11. Cuthill, Elizabeth
CONESCO, Inc., Cambridge, Mass., Rep. F-111-2 SHIP HULL VIRATIONS-5, Analysis of Hull Structures as applied to \$58(N) 598 GEORGE WASHINGTON by F. E. Reed and E. Cuthill, Mar. 1963, XI ZND p. graphs, tobles, refs. (Index No. 5-F013-11-0), Task 1351; Cantract NObs 86111) A camputer program for determining the natural frequency of a ship hull elastically connected to other elastic systems and to sprung masses and containing concentrated and hysteresis damping is developed. This program is applied to the mass-elastic system than represents the \$58(N) 598 GEO. WASHINGTON in detail. The influence upon the hull response to propeller and hull excitotion in the stem of variables such as the number of mass points used to represent the hull, the anission of the propulsion sub-system, the stiffness between the propulsion sub-system, the stiffness between the propulsion sub-system, the treatment of water inertias, the treatment of sprung masses and the amount of hysteresis damping in the hull is shown.	CONESCO, Inc., Cambridge, Mass., Rep. F-111-2 SHIP HULL VIBRATIONS-5, Analysis of Hull Structures as applied to SSB(N) 598 GEORGE WASHINGTON by F. E. Reed and E. Cuthill, Mar. 1963, XI 270 p. graphs, tobles, refs.(Index No. 5-F013-11-01, Task 1351, Centract NObs 86111) A computer program for determining the natural frequency of a ship hull elastically connected to other elastic systems and to sprug masses and containing concentrated and hysteresis damping is developed. This program is applied to the mass-elastic system that ingressents the SSB(N) 598 GEO. WASHINGTON in detail. The influence upon the hull response to propeller and holl activation in the stem of variables such as the number of mass points used to represent the hull, the amission of the propulsion sub-system, the siffness between the propulsion sub-system, the siffness between the propulsion sub-system, the inclusion of the masses on the primases and the reasonant of inartia of the hull is shown.